

ASX ANNOUNCEMENT

Hits of up to 19g/t identify high-grade sulphide lodes at emerging Lake Roe discovery in WA

Reverse Circulation (RC) Drill Results

- Maiden RC drilling program returns high-grade intersections of up to 19.33g/t in primary sulphide lode mineralisation at the Bombora Prospect within the Lake Roe Gold Project, 100km east of Kalgoorlie
- Interim assay results from the initial 12 drill holes of a 36-hole, 6,500m reverse circulation drill program include:
 - 10m at 2.78g/t Au from 38m incl. 2m at 10.74g/t and 1m at 19.33g/t (BBRC0009);
 - 7m at 2.95g/t Au from 74m incl. 4m at 5.08g/t and 2m at 7.58g/t (BBRC0002);
 - 12m at 1.88g/t Au from 192m incl. 7m at 2.86g/t and 2m at 3.78g/t (BBRC0012); and
 - 5m at 3.69g/t from 29m incl. 3m at 5.23g/t (BBRC0001)
- High-grade assay results are from the first 12 holes drilled over the northern ~500m extent of the 2.2km-long by 1km-wide area of oxide mineralisation outlined at Bombora
- × RC drilling to test the remaining 1.7km strike length in progress
- The results extend the economic potential of the project into the primary zone and confirm sulphide lode mineralisation as the source of the extensive oxide gold mineralisation
- ★ The results upgrade the potential of oxide mineralisation outlined over a 4km distance extending north of the area of RC drilling (total strike length ~6km)

Aircore Drill Results

- × High-grade gold in final results from December 2015 aircore drill program. Results include:
 - 7m at 2.58g/t Au from 29m incl. 2m at 8.38g/t and 1m at 16.12g/t (BAC1032);
 - 4m at 3.66g/t Au from 24m incl. 2m at 7.01g/t and 1m at 13.52g/t (BAC0989);
 - 1m at 6.12g/t Au from 27m (BAC0988);
 - 3m at 2.37g/t Au from 27m incl. 2m at 2.71g/t (BAC1014);
 - 12m at 1.46g/t Au from 39m incl. 4m at 3.19g/t and 2m at 5.55g/t (BAC1061); and
 - 4m at 1.35g/t Au from 71m incl. 1m at 3.37g/t (BAC1072)

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au Website: www.breakerresources.com.au

Introduction/Background

Breaker Resources NL (ASX: BRB, **Breaker**) is pleased to provide an update of RC and aircore drill results from the Bombora Prospect, part of its 100%-owned Lake Roe Project, located 100km east of Kalgoorlie between the Carosue Dam and Karonie gold deposits.

The main exploration target is high-grade gold mineralisation hosted by a thick fractionated dolerite situated in a domal geometry between the Claypan and Keith-Kilkenny shear zones. The 2.2km x 1.0km Bombora Prospect is situated in the southern part of a 6km-long greenfields gold system identified below thin transported cover by aircore drilling in late 2015 with grades up to 22.44g/t Au (Figure 1; ASX Release 30 October 2015).

A ~6,500m, 36-hole RC drill program commenced in the northern part of the Bombora Prospect on 9 February 2016 and is currently progressing southwards. Interim assay results from the initial 12 drill holes in the northern ~500m of the Bombora Prospect are reported.

The objective of the RC drilling is to confirm a potentially major greenfields gold discovery by scoping the nature of the primary (sulphide) zone over the full extent of the Bombora Prospect area. Infill aircore drilling leading up to the RC drilling has defined extensive zones of oxide gold mineralisation on a wide drill spacing (*minimum* 100m x 40m; Figures 2 and 4).

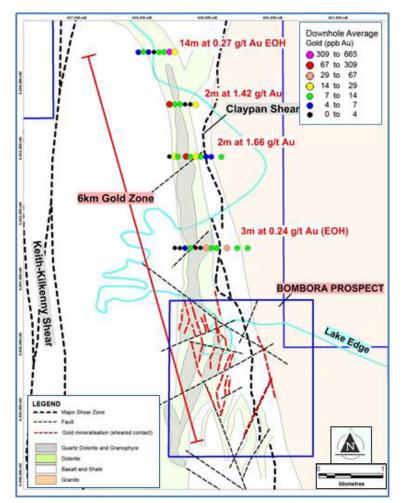


Figure 1: Bombora Prospect Location Plan with Selected Aircore Drill Results

RC Drill Results

The RC drilling is systematically assessing the full strike-length of dolerite-hosted mineralisation at the Bombora Prospect. The general strategy of the RC drilling is to assess the grade, geometry and continuity of gold mineralisation in the primary (fresh) zone and relate it to oxide (aircore) drill intersections, many of which terminate in mineralisation. Details of the RC drilling are summarised in Annexure 1.

The RC drilling is testing zones of gold mineralisation highlighted in Figure 2 which are interpreted from extensive aircore drilling as summarised in Figure 4.

The initial 12 drill holes of the program completed in the northern ~500m of the Bombora Prospect are located on Figure 2. Drilling is currently in progress in the southern part of the gold system for the Bombora Prospect and is scheduled for completion in late March 2016 subject to weather conditions.

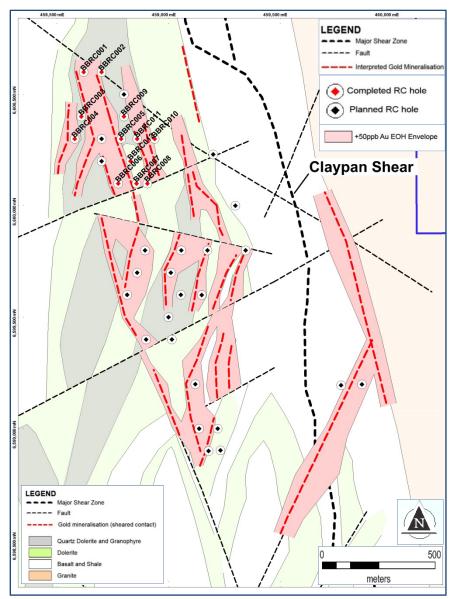


Figure 2: Bombora Prospect RC Location Plan BBRC001-012

Preliminary assay results for the initial 12 drill holes consist of a mix of preliminary 4m composite samples and selected 1m samples prioritised for assay. More significant drill intersections are summarised below. All results in excess of 0.1g/t (100ppb) gold are provided in Appendix 1.

Hole No.	From (m)	To (m)	Width (m)	Au (g/t)
BBRC0001	16	40	24	0.92
incl.	29	34	5	3.69
incl.	31	34	3	5.23
BBRC0002	74	81	7	2.95
incl.	75	79	4	5.08
incl.	76	78	2	7.58
BBRC0009	38	48	10	2.78
incl.	46	48	2	10.74
incl.	46	47	1	19.33
BBRC0012	192	204	12	1.88
incl.	193	200	7	2.86
incl.	193	195	2	3.78

Table 1: Significant RC Drill Intersections

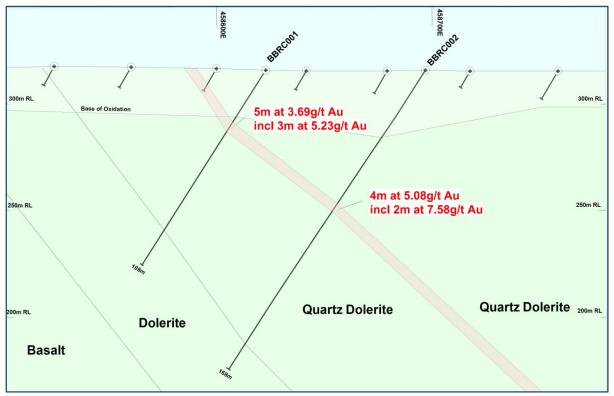


Figure 3: Bombora Prospect Drill Section 6600600N (BBRC001/BBRC002)

Drilling to date has confirmed that the fractionated dolerite dips moderately to the east and is disrupted by a complex series of faults that are mainly moderate to steep east-dipping (Figure 3). The detailed geometry of these faults is a work in progress.

Gold mineralisation is associated with zones of faulting, potassic alteration (biotite, sericite) and sulphide alteration (pyrite, pyrrhotite). It is preferentially developed in the iron-rich upper part of the fractionated dolerite and the sheared lower (eastern) contact of the fractionated dolerite. The geometry and nature of gold mineralisation in the vicinity of the Claypan Shear and along the granite contact to its immediate east is currently unclear.

Aircore Drill Results December 2015 (Phase 3)

One metre sample assay results were received for anomalous oxide gold mineralisation – plus 0.1g/t Au four metre composite samples – encountered in the December 2015 aircore drill program (BAC982-1099). Details of the December 2015 aircore drilling are provided in Annexure 1.

Selected aircore drill intersections are summarised below and are located in Figure 4. A complete tabulation of aircore drilling results in excess of 0.1g/t Au is provided in Appendix 2.

Hole No.	From (m)	To (m)	Wid t h (m)	Au (g/t)
BAC0988	27	28	1	6.12
BAC0989	24	28	4	3.66
incl.	25	27	2	7.01
incl.	25	26	1	13.52
BAC1014	27	30	3	2.37
	27	29	2	2.71
BAC1024	40	43	3	1.00
BAC1032	29	36	7	2.58
incl.	30	32	2	8.38
incl.	30	31	1	16.12
BAC1034	32	33	1	2.46
BAC1061	39	51	12	1.46
incl.	39	43	4	3.19
incl.	40	42	2	5.55
incl.	46	48	2	1.19
BAC1072	71	75	4	1.35
incl.	72	73	1	3.37
BAC1074	49	50	1	1.42

 Table 2: Significant AC Drill Intersections from Phase 3

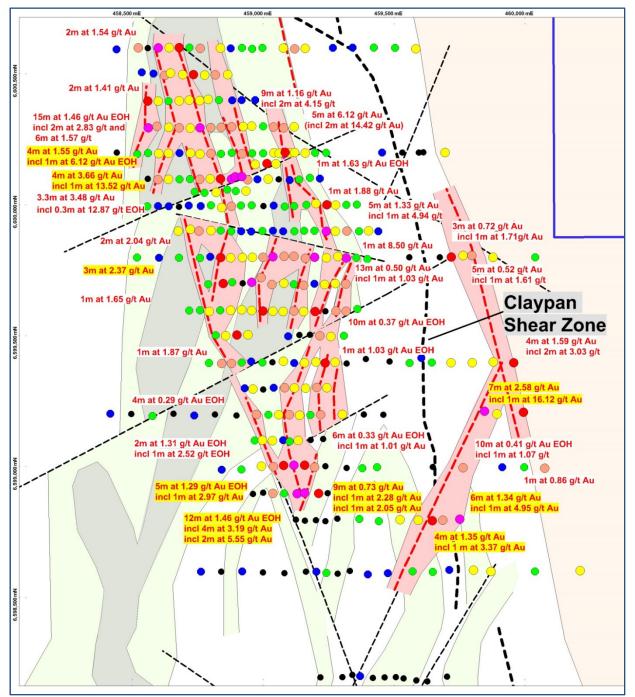


Figure 4: Bombora Prospect, Lake Roe Project - Drill Hole Location Plan with <u>Thematic Down Hole Average Gold Values</u> and Selected Aircore Drill Intersections. <u>New data highlighted yellow</u>.

Discussion of RC and Aircore Drill Results

The RC drill results, although preliminary, tend to confirm that extensive zones of oxide gold mineralisation outlined over a 2.2km x 1.0km area at Bombora are sourced from primary sulphide mineralisation. This extends the economic potential of the project into the primary zone at the Bombora Prospect and enhances the likelihood of the gold system extending over a 4km distance to the north (Figure 1).

The current RC drill program is reconnaissance in nature. Given the wide drill line/drill hole spacing employed to date, any high grade mineralisation encountered in the primary or oxide zone is of potential economic significance.

Commentary on Results

Breaker Executive Chairman Tom Sanders said the RC drilling had achieved its key objective, which was to establish the presence of high-grade primary mineralisation on a wide reconnaissance drill hole spacing.

"As our understanding of the gold system develops, my expectation is that we will see more high grade gold results as we begin to identify and track the mineralisation. The distances we are covering with our drilling are large and the scale is deceptive. For this reason, any high grade gold results encountered are of significance."

"Given the size of the oxide footprint and the high grades we are achieving at depth, it is clear that Lake Roe is emerging as a significant greenfields discovery. We now know high-grade primary mineralisation is the source of the extensive mineralisation we have outlined over a 6km strike length," Mr Sanders said.

Photo 1: Lake Roe Project – BBRC0001 Bombora North

Tom Sanders Executive Chairman Breaker Resources NL

16 March 2016

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

About Breaker

Breaker Resources NL is a significant tenement holder in WA's Eastern Goldfields Superterrane in the Yilgarn Craton. Breaker's objective is the discovery and development of large new, greenfields gold deposits. Its long-term exploration strategy focuses on the use of innovative multi-element geochemical techniques to identify new gold systems concealed by transported cover in unexplored parts of a world class gold province, WA's Eastern Goldfields Superterrane in the Yilgarn Craton. The Company's research and development project activities augment this strategy.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of The Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are officers or consultants of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1 – RC Drilling Results

Hole No.	Zone	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample	Comment
BBRC0001	Lake Roe	108	6600597	458622	315.6996	-59	267.6	16	40	24	0.92	Composite 16-20m; Split 20-40m	
			including					29	35	6	3.19	Split	
			including					29	34	5	3.69	Split	
			including			1		31	34	3	5.23	Split	
BBRC0002	Lake Roe	168	6600595	458697	315.7431	-58.4	272.3	20	28	8	0.25	Composite	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	31	33	2	0.68	Split	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	37	38	1	1.00	Split	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	44	48	4	0.12	Composite	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	52	56	4	0.10	Composite	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	74	81	7	2.95	Split	
			including					75	79	4	5.08	Split	
			including					76	78	2	7.58	Split	
BBRC0002			6600595	458697	315.7431	-58.4	272.3	118	119	1	0.12	Split	
BBRC0003	Lake Roe	96	6600399	458609	315.9767	-60.2	269.8	24	32	8	0.40	Composite	
		1	including					24	28	4	0.54	Composite	
BBRC0004	Lake Roe	144	6600298	458581	317.3558	-60.3	276.3	16	20	4	0.11	Composite	
BBRC0004			6600298	458581	317.3558	-60.3	276.3	32	36	4	0.10	Composite	
BBRC0005	Lake Roe	114	6600306	458788	315.9803	-59.8	271.4	16	20	4	0.26	Composite	
BBRC0005			6600306	458788	315.9803	-59.8	271.4	44	56	12	0.93	Composite	
		r	including		1	1		44	48	4	1.60	Composite	
BBRC0006	Lake Roe	138	6600101	458772	317.157	-59.7	270.2	48	52	4	0.23	Composite	
BBRC0006			6600101	458772	317.157	-59.7	270.2	136	138	2	0.11	Composite	EOH
BBRC0007	Lake Roe	144	6600112	458861	316.7834	-59.2	272.4	24	32	8	0.37	Composite	
			including			1		24	28	4	0.50	Composite	
BBRC0007			6600112	458861	316.7834	-59.2	272.4	36	48	12	0.27	Composite	
BBRC0008	Lake Roe	180	6600113	458905	316.3578	-59.8	269.9	28	32	4	0.40	Composite	
BBRC0009	Lake Roe	240	6600396	458803	316.3021	-60.8	272.1	20	24	4	0.13	Composite	
BBRC0009			6600396	458803	316.3021	-60.8	272.1	36	49	13	2.17	Split	
			including					38	48	10	2.78	Split	
			including					38	39	1	1.33	Split	
			including					41	43	2	1.57	Split	
			including					46	48	2	10.74	Split	
		r	including					46	47	1	19.33	Split	
BBRC0009			6600396	458803	316.3021	-60.8	272.1	152	164	12	0.45	Split	
			including					154	156	2	0.77	Split	
			including					158	159	1	0.94	Split	
			including			1		161	163	2	0.85	Split	
BBRC0009			6600396	458803	316.3021	-60.8	272.1	167	168	1	0.15	Split	
BBRC0009			6600396	458803	316.3021	-60.8	272.1	171	172	1	0.33	Split	
BBRC0010	Lake Roe	144	6600305	458932	317.2029	-60.7	273.1	36	40	4	0.13	Composite	
BBRC0011	Lake Roe	174	6600299	458856	316.5304	-60.2	272.4	16	20	4	0.15	Composite	
BBRC0011			6600299	458856	316.5304	-60.2	272.4	60	64	4	0.46	Composite	
BBRC0011			6600299	458856	316.5304	-60.2	272.4	92	96	4	0.22	Composite	
BBRC0011			6600299	458856	316.5304	-60.2	272.4	137	138	1	0.10	Split	
BBRC0011			6600299	458856	316.5304	-60.2	272.4	142	145	3	0.56	Split	
			including					143	145	2	0.72	Split	
BBRC0011			6600299	458856	316.5304	-60.2	272.4	156	168	12	0.65	Composite	
		1	including		1	1		160	164	4	1.71	Composite	
BBRC0011			6600299	458856	316.5304		272.4	173	174	1	0.10	Composite	EOH
BBRC0012	Lake Roe	264	6600199	458829	317.516	-60.6	272.2	169	175	6	0.31	Split	
			including					172	173	1	0.52	Split	
ļ,			including		1		-	174	175	1	0.82	Split	
BBRC0012			6600199	458829	317.516	-60.6	272.2	192	204	12	1.88	Composite 200- 204m; Split 192-200m	
			including					192	200	8	2.69	Split	
			-							_		6 19	
			including					193	200	7	2.86	Split	

Notes

- One metre results are pending for all composite samples.
- Cut-off grade of 0.1g/t (100ppb Au) applied due to the greenfields nature of the drilling (details provided in Annexure 1).
- ★ The mineralised widths shown are downhole distances. The estimated true width is interpreted to be approximately 70% of the downhole interval but this is provisional and subject to change given the preliminary nature of the drilling.

APPENDIX 2 – Aircore Drilling Results

Hole No.	Zone	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample	Comment
BAC0987	Lake Roe	31	6600053	458934	315.89	-60	270	27	28	1	0.30	Split	
BAC0988	Lake Roe	28	6600107	458893	316.48	-60	270	27	28	1	6.12	Split	EOH
BAC0989	Lake Roe	32	6600108	458918	316.36	-60	270	24	28	4	3.66	Split	
		•	including					25	27	2	7.01	Split	
			including					25	26	1	13.52	Split	
BAC0989			6600108	458918	316.36	-60	270	31	32	1	0.82	Split	EOH
BAC0990	Lake Roe	34	6600155	458969	316.68	-60	270	33	34	1	0.48	Split	EOH
BAC0991	Lake Roe	37	6600158	459014	315.61	-60	270	30	35	5	0.44	Split	
		•	including					30	32	2	0.86	Split	
			including					31	32	1	1.15	Split	
BAC0998	Lake Roe	17	6600495	458624	316.04	-60	270	12	16	4	0.18	Split	
BAC1001	Lake Roe	17	6600498	458734	317.79	-60	270	12	17	5	0.21	Composite 16-17m; Split 12-16m	EOH
BAC1003	Lake Roe	24	6600497	458817	317.28	-60	270	20	23	3	0.40	Split	
			including					21	22	1	0.56	Split	
BAC1011	Lake Roe	29	6599700	458847	318.81	-60	270	20	25	5	0.48	Split	
			including					23	24	1	0.61	Split	
BAC1011			6599700	458847	318.81	-60	270	26	28	2	0.11	Split	
BAC1014	Lake Roe	54	6599704	458956	317.07	-60	270	23	24	1	0.60	Split	
BAC1014			6599704	458956	317.07	-60	270	27	30	3	2.37	Split	
								27	29	2	2.71	Split	
BAC1014			6599704	458956	317.07	-60	270	39	47	8	0.65	Split	
	-		including					43	46	3	1.18	Split	
			including					43	44	1	2.01	Split	
BAC1015	Lake Roe	29	6599723	458992	316.01	-60	270	25	29	4	0.42	Split	EOH
		•	including					28	29	1	0.55	Split	EOH
BAC1019	Lake Roe	38	6599500	459217	317.3	-60	270	26	28	2	0.41	Split	
BAC1019			6599500	459217	317.3	-60	270	29	30	1	0.10	Split	
BAC1024	Lake Roe	45	6599503	458900	319.45	-60	270	40	43	3	1.00	Split	
		•	including					41	42	1	1.76	Split	
BAC1025	Lake Roe	50	6599500	458857	319.34	-60	270	36	40	4	0.21	Split	
BAC1026	Lake Roe	41	6599502	458819	319.73	-60	270	40	41	1	0.26	Composite	EOH
BAC1029	Lake Roe	74	6599396	459559	317.29	-60	270	29	30	1	0.37	Split	
BAC1032	Lake Roe	87	6599212	459846	317.24	-60	270	29	36	7	2.58	Split	
		•	including					30	32	2	8.38	Split	
			including					30	31	1	16.12	Split	
			including					34	35	1	0.52	Split	
BAC1032			6599212	459846	317.24	-60	270	64	66	2	0.40	Split	
		•	including			•	•	65	66	1	0.69	Split	
BAC1032			6599212	459846	317.24	-60	270	71	72	1	0.60	Split	
BAC1032		1	6599212	459846	317.24	-60	270	76	77	1	0.42	Split	
BAC1032			6599212	459846	317.24	-60	270	79	80	1	0.17	Split	
BAC1034	Lake Roe	73	6599208	459994	317.25	-60	270	32	33	1	2.46	Split	
BAC1034		1	6599208	459994	317.25	-60	270	60	72	12	0.25	Split	
	i		including			L		69	70		0.59	Split	

Hole No.	Zone	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample	Comment
BAC1037	Lake Roe	40	6599200	459302	318.71	-60	270	39	40	1	0.40	Split	EOH
BAC1038	Lake Roe	34	6599199	459020	318.91	-60	270	32	33	1	0.13	Split	
BAC1040	Lake Roe	45	6599297	458961	318.42	-60	270	38	40	2	0.19	Split	
BAC1043	Lake Roe	39	6599302	459082	318.08	-60	270	37	39	2	0.62	Split	EOH
			including					37	38	1	0.99	Split	
BAC1044	Lake Roe	27	6599301	459119	317.99	-60	270	25	26	1	0.14	Split	
BAC1045	Lake Roe	26	6599300	459162	318.07	-60	270	20	21	1	0.13	Split	
BAC1045			6599300	459162	318.07	-60	270	22	24	2	0.21	Split	
BAC1046	Lake Roe	24	6599303	459205	318.61	-60	270	21	24	3	0.18	Split	EOH
BAC1047	Lake Roe	23	6599302	459243	318.55	-60	270	20	21	1	0.23	Split	
BAC1049	Lake Roe	16	6599101	458997	319.09	-60	270	14	15	1	0.30	Split	
BAC1058	Lake Roe	22	6598898	459037	320.46	-60	270	14	18	4	0.17	Split	
BAC1060	Lake Roe	39	6598897	459130	320.33	-60	270	32	39	7	0.95	Split	EOH
			including					33	38	5	1.29	Split	
			including					33	34	1	1.45	Split	
			including	-			-	36	37	1	2.97	Split	
BAC1061	Lake Roe	51	6598900	459158	320.2	-60	270	39	51	12	1.46	Split	EOH
			including					39	43	4	3.19	Split	
			including					40	42	2	5.55	Split	
			including					46	48	2	1.19	Split	
			including					46	47	1	1.62	Split	
			including					50	51	1	0.52	Split	EOH
BAC1062	Lake Roe	79	6598898	459212	320.33	-60	270	34	43	9	0.73	Split	
			including					35	40	5	1.20	Split	
			including					35	38	3	1.49	Split	
			including					35	36	1	2.28	Split	
			including				-	37	38	1	2.05	Split	
BAC1062			6598898	459212	320.33	-60	270	45	46	1	0.12	Split	
BAC1062			6598898	459212	320.33	-60	270	51	52	1	0.13	Split	
BAC1062			6598898	459212	320.33	-60	270	54	55	1	0.13	Split	
BAC1070	Lake Roe	59	6598798	459523	320.71	-60	270	56	58	2	0.47	Split	
			including					56	57	1	0.66	Split	
BAC1071	Lake Roe	72	6598796	459593	320.19	-60	270	71	72	1	0.13	Split	EOH
BAC1072	Lake Roe	81	6598794	459646	320.11	-60	270	59	60	1	0.15	Split	
BAC1072			6598794	459646	320.11	-60	270	71	75	4	1.35	Split	
			including					72	75	3	1.65	Split	
	1	,	including			-		72	73	1	3.37	Split	
BAC1073	Lake Roe	76	6598796	459686	320	-60	270	55	65	10	0.39	Split	
			including					59	62	3	0.90	Split	
	1	r	1			-	1	61	62	1	1.54	Split	
BAC1074	Lake Roe	90	6598800	459751	319.84	-60	270	49	50	1	1.42	Split	_
BAC1074			6598800	459751	319.84	-60	270	64	75	11	0.86	Split	
			including					66	72	6	1.34	Split	
			including					66	67	1	4.95	Split	
			including		-			73	74	1	0.61	Split	_
BAC1074			6598800	459751	319.84	-60	270	78	80	2	0.32	Split	_
BAC1085	Lake Roe	60	6598605	459804	320.83	-60	270	50	51	1	0.34	Split	
BAC1086	Lake Roe	51	6598600	459870	320.76	-60	270	40	41	1	0.50	Split	_
BAC1086			6598600	459870	320.76	-60	270	44	46	2	0.37	Split	_
			including					44	45	1	0.63	Split	

Notes

- Cut-off grade of 0.1g/t (100ppb Au) applied due to the greenfields nature of the drilling (details provided in Annexure 2).
- ★ The mineralised widths shown are downhole distances. The estimated true width is interpreted to be approximately 70% of the downhole interval but this is provisional and subject to change given the preliminary nature of the drilling.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA - RC DRILLING

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	12 reverse circulation (RC) holes completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer mounted cyclone by a green plastic bag in 1m intervals and the dry sample was riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear sample taken.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Drill hole collars were picked up using
		handheld GPS and corrected/checked for elevation using elevation data from a detailed aeromagnetic survey.
	Aspects of the determination of mineralisation that are Material to the Public Report.	RC samples were composited at 4m to produce a bulk 3kg sample.
	In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	n/a
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected via spear sampling of the riffle split bulk
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	sample contained in green plastic bags. The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise	RC samples were collected at 1m intervals and composited into 4m

Criteria	JORC Code explanation	Commentary
	representivity of samples.	samples using a spear to sample individual metre bagged samples.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with field sample duplicates.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ	Sample duplicates were taken three times in every 100 samples.
	material collected, including for instance results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	None undertaken in this program.
	Documentation of primary data, data entry procedures, data verification, data	Primary geological and sampling data were recorded digitally and on hard

Criteria	JORC Code explanation	Commentary
	storage (physical and electronic) protocols.	copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff and assay results are merged with the primary data using established database protocols.
	Discuss any adjustment to assay data.	No adjustments were undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars were located by handheld GPS. Elevation values are in AHD and were corrected using the DEM- S data from the 1 second SRTM Derived Digital Elevation Models sourced from Geoscience Australia. Expected accuracy is +/- 4m for easting, northing and +/- 10m elevation coordinates.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	Hole pickups were undertaken using a handheld GPS (see comments above). This is considered acceptable for these regional style exploration activities.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The 12 RC drill holes were not spaced in a regular grid pattern however occurred in an area approximately 0.6km by 0.5km on existing 100m spaced AC drill lines.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill density is not adequate at this stage to define grade continuity and geological continuity to support classification as a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all holes via spearing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling (-60 towards 270/grid west) has confirmed the interpreted east dipping stratigraphy (based from field mapping) minimising lithological bias. At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No conclusive orientation-based sampling bias has been identified in the data to this point.
Sample security	The measures taken to ensure sample security.	RC samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.

Criteria	JORC Code explanation	Commentary
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits/reviews have been conducted on sampling technique to date.

SECTION 1: SAMPLING TECHNIQUES AND DATA - AIRCORE DRILLING

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling was conducted via aircore drilling (AC) on a nominal 40m or 80m hole spacing and a line spacing of 100m, 200m or 400m. All holes were drilled to blade refusal.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	AC samples were collected from a rig- mounted cyclone by bucket or green plastic bag in 1m intervals. Transported cover material was placed directly on the ground from the buckets in rows of 10. The Archean samples were collected in green bags and the dry sample was riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 10. Any damp or wet Archean samples were kept in the green plastic bag and placed in the rows of samples and a representative scoop sample taken. Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Drill hole collars were picked up using
		handheld GPS and corrected/checked for elevation using elevation data from a detailed aeromagnetic survey.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to	To initially identify mineralised zones in each AC drill hole, the 1m bulk samples were sampled with a scoop to generate 4m composite samples of approximately 3kg, or variable 1m to 3m (composite) samples at end-of-hole.
	(eg. reverse circulation ariling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine	The 3kg AC composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 10g sub sample (charge) for aqua regia digestion and gold analysis by ICP- MS with a 1ppb lower detection limit

Criteria	JORC Code explanation	Commentary
	nodules) may warrant disclosure of detailed information.	(4,000ppb upper limit).
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	AC drilling was carried out using a 3½" blade bit to refusal, generally at the fresh rock interface. Drilling was undertaken by Ausdrill Limited utilising a KL150 drill rig mounted on a belt driven track vehicle.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Samples were mainly dry with some localised damp or wet samples (~85% of the Archean samples collected were dry). AC drill recoveries were visually estimated as a semi-quantitative range and recorded in the log. Recoveries were generally excellent (>90%), with reduced recovery in the initial near- surface sample and transported cover material.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drill cyclone and sample buckets or green plastics bags were used to collect the 1m samples and cleaned between rod changes. In addition, the cyclone was generally cleaned several times during each hole (at the base of transported cover and the base of completed oxidation) and after each hole to minimise downhole and/or cross- hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the AC drilling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	AC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All AC drill holes were logged in full.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	n/a
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	AC composite samples are collected with a sample scoop. Dry samples below transported cover are riffle split to obtain representative 1m samples (submitted

Criteria	JORC Code explanation	Commentary
		when anomalous).
		The samples were recorded as dry, damp or wet. Sample duplicates were obtained by repeating the composite sampling process.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All AC samples were sorted, dried, crushed to 10mm, pulverised to -75µm, split to produce a 10g charge prior to digestion via aqua regia (standard industry method).
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	AC samples were collected at 1m intervals and composited into 4m samples using a scoop to sample individual metre samples.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with field sample duplicates.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Sample duplicates were taken three times in every 100 samples.
		All AC samples were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The composite AC gold analytical technique used a 10g charge with an aqua regia digestion (partial digestion) which is considered appropriate for a first pass analysis of oxide-dominated material within the regolith intercepted by AC drilling.
		1 m split AC samples used a 25g charge with an aqua regia digestion.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and

accuracy (ie. lack of bias) and precision have been established.three duplicates per 100 samples. Sample preparation checks for finene were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laborator QAQC involved the use of internal la standards using CRMs, blanks, splits a replicates.VerificationThe verification of significant intersectionsAlternative BRB personnel have verified	
Sample preparation checks for finence were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laborato QAQC involved the use of internal la standards using CRMs, blanks, splits a replicates.	
Verification The verification of significant intersections Alternative BRB personnel have verified	с С
of sampling and assaying by either independent or alternative company personnel. by either independent or alternative company personnel. the significant results outlined in this report. It is considered that the comp is using industry standard techniques sampling and using independent laboratories with the inclusion of Company standards on a routine base	any for
The use of twinned holes. None undertaken.	
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	ere it e staff e
Discuss any adjustment to assay data. No adjustments were undertaken.	
Location of data pointsAccuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.Drill hole collars were located by handheld GPS. Elevation values are AHD and were corrected using the D S data from the 1 second SRTM Deriv Digital Elevation Models sourced from Geoscience Australia. Expected accuracy is +/- 4m for easting, northin and +/- 10m elevation coordinates.	EM- ed 1
Specification of the grid system used. GDA94 MGA, Zone 51.	
Quality and adequacy of topographic control. Hole pickups were undertaken using handheld GPS (see comments above This is considered acceptable for the regional style exploration activities.	∋).
Data spacing and distributionData spacing for reporting of Exploration Results.Sampling was conducted via aircore drilling on a nominal 40m or 80m hole spacing and a line spacing of 100m, 200m or 400m.	
Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.Not yet.	
Whether sample compositing has been Some of the AC results reported are	gold.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled AC drilling (-60 towards 270/west) tested the interpreted east dipping stratigraphy perpendicular (based from field mapping) minimising lithological bias. At this stage any primary mineralised structural orientation is unknown and no comment can be made.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The angled orientation of AC drilling may introduce sampling bias due to the unknown orientation of primary mineralisation/structures. This would be considered minimal as drilling coverage is essentially restricted to the overlying regolith and seldom penetrates fresh rock by more than a couple of metres.
Sample security	The measures taken to ensure sample security.	AC samples were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel.
		The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted on sampling techniques to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure statusType, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	The RC and AC drill holes were located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The tenement is in good standing and no known impediments exist.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover

Criteria	JORC Code explanation	Commentary
		(maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially on the sheared and altered contacts of an 800m wide fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Appendix 1 for significant results from the RC drilling and Appendix 2 for the AC drilling. Drill hole locations are described in the
	 easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	body of the text and on related Figures. The use of low level geochemical information to identify anomalous trends and "footprints" rather than reporting of individual values is considered appropriate in locating and mapping geological and geochemical anomalous trends that potentially identify target areas for follow up drilling.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The detailed coordinates for each hole collar, and hole depth information is not considered material to this report, and as such individual hole location details are not tabulated.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported AC assays have been length weighted. No top-cuts have been applied. A nominal 0.1g/t Au lower cut- off is reported as being potentially significant in the context of the grassroots geological setting.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the	Arithmetic length weighting used.

Criteria	JORC Code explanation	Commentary
	procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisatio n widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with	At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
intercept lengths	respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	The angled orientation of AC drilling may introduce some sampling bias (increasing the intercept width of flat
	lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	lying or vertical mineralisation). All drill hole intercepts are measured in downhole metres
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above a 0.1g/t lower cut-off are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	