

ASX ANNOUNCEMENT

18 April 2016

New RC drill results up to 25g/t further highlight potential for significant gold discovery, Lake Roe Gold Project, WA

Latest results considered pivotal because they "crack the code" concerning the controls on mineralisation

- Second round of RC drill results from Lake Roe Project, 100km east of Kalgoorlie returns strong results such as 3m at 8.53g/t including 1m at 24.9g/t
- The key finding of this maiden RC program, when combined with the first round of results, is that high-grade primary gold mineralisation occurs preferentially on NNWtrending faults (open in a sinistral faulting regime)
- Breaker has identified 4km of these NNW structures immediately north of the area which produced the first round of strong RC results
- The second round of results released today come from immediately south of the first area. The dominant structures in this area trend NNE and primary gold is therefore weaker (closed in a sinistral faulting regime)
- ★ A 4,000m program of infill aircore drilling extending 4km north of Bombora is planned to start in 2-3 weeks to assist RC drill targeting in this area

Photo 1: Lake Roe Project

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au Website: www.breakerresources.com.au

ASX Code: BRB

ACN: 145 011 178

Introduction/Background

Breaker Resources NL (ASX: BRB, **Breaker**) is pleased to provide an update of reverse circulation (**RC**) drill results from the Bombora Prospect, part of its 100%-owned Lake Roe Project, located 100km east of Kalgoorlie between the Carosue Dam and Karonie gold deposits.

The Bombora Prospect is located in the southern part of a 6km-long zone of dolerite-hosted gold mineralisation identified by wide-spaced, Phase 1 aircore drilling through thin (5-10m) transported cover in late 2015 (Figure 1). Mineralisation is hosted by a thick compositionally zoned (fractionated) dolerite situated to the immediate west of the Claypan Shear Zone, a major shear zone and "domain" boundary.

Infill aircore drilling leading up to the RC drilling focused on a 2km-long zone situated in the southern part of the 6km zone of gold mineralisation defined by the Phase 1 aircore drilling, the Bombora Prospect. This drilling confirmed widespread oxide gold mineralisation over a 2.2km x 1.0km area with grades up to 22.44g/t Au on a 40m drill hole spacing (Figure 3).

A 6,703m, 36-hole RC drill program targeting the Bombora Prospect was completed on 26 March 2016. The main objective of the RC drilling was to establish the presence and broad controls on primary gold mineralisation over the full extent of the Bombora Prospect and relate it to oxide gold mineralisation encountered in aircore drilling.

Figure 1: Bombora Prospect Location Plan with Selected Aircore Drill Results (Red lines represent gold trends based on aircore drilling)

RC Drill Program

RC drill holes are located on Figure 2 in relation to bedrock geology and a +50ppb gold alteration envelope based on end-of-hole aircore sampling.

Assay results have now been received for four metre composite drill samples for all drill holes (BBRC0001-0036). One metre sample split assay results were also received for drill holes BBRC0001-0018; one metre sample split assay results for BBRC0019-0036 are pending.

RC holes were angled 60° to the west and confirmed that the dolerite is inclined (dips) moderately to the east. Two RC holes attempted to test a NW-trending structure to the east of the Claypan Shear but were abandoned due to high water flow. The dip of the granite contact and adjoining mineralised structures in this area remain unknown as a result.

Additional details relating to the RC drilling are summarised in Annexure 1 and Appendix 1.

Figure 2: Bombora Prospect RC Drill Hole Location Plan

RC Drill Results

A summary of all assay results above 0.1 g/t Au are summarised in Appendix 1. More significant drill intersections are summarised below (**new results in bold**).

Hole No.	From (m)	To (m)	Width (m)	Au (g/t)	Sample
BBRC0001	29	34	5	3.69	Split
incl.	31	34	3	5.23	Split
BBRC0002	75	79	4	5.08	Split
BBRC0005	46	47	1	5.15	Split
BBRC0007	24	26	2	1.25	Split
BBRC0009	38	48	10	2.78	Split
incl.	46	48	2	10.74	Split
BBRC0011	160	164	4	1.96	Split
incl.	161	164	3	2.38	Split
incl.	161	162	1	4.11	Split
BBRC0012	192	202	10	2.00	Split
incl.	192	197	5	3.35	Split
incl.	193	197	4	3.83	Split
BBRC0014	26	36	10	1.81	Split
incl.	26	27	1	1.57	Split
incl.	32	35	3	4.62	Split
BBRC0015	31	34	3	8.53	Split
incl.	31	33	2	12.74	Split
incl.	31	32	1	24.91	Split
BBRC0015	48	49	1	0.50	Split
BBRC0016	45	51	6	0.24	Split
incl.	45	46	1	0.34	Split
BBRC0017	167	172	5	0.69	Split
incl.	167	168	1	1.27	Split
BBRC0017	182	184	2	1.22	Split
incl.	182	183	1	1.65	Split
BBRC0026	16	40	24	0.51	Composite
incl.	24	32	8	1.12	Composite
incl.	28	32	4	1.67	Composite
BBRC0028	12	32	20	0.43	Composite
incl.	24	28	4	0.73	Composite
BBRC0029	44	60	16	0.39	Composite
BBRC0029	52	60	8	0.59	Composite
incl.	52	56	4	0.68	Composite
BBRC0035	60	64	4	2.28	Composite
BBRC0035	144	156	12	0.42	Composite
incl.	144	152	8	0.48	Composite

Analysis of Drill Results

High Grade Primary Sulphide Mineralisation

Breaker's maiden reconnaissance RC drill program at Bombora has confirmed the presence of high grade primary gold mineralisation that is open to the north. This verifies that the geological setting at Lake Roe is favourable and the processes needed to transport, focus and deposit gold at economic grades have been active.

Controls on High Grade Primary Sulphide Mineralisation

The RC results and their distribution have established the broad geological controls on the location of high grade primary gold mineralisation which is the key to finding additional high grade primary gold mineralisation.

The RC results indicate that NNW-trending faults are more mineralised relative to NNE-trending faults due to the prevailing structural regime ("east-block-north" or sinistral faulting). All RC holes that encountered significant (+1g/t) primary gold mineralisation are located on NNW trending faults (Figure 2).

NNW-trending faults prevail to the north of a cross-fault (Figure 2) which demarcates a prominent change in trend (bend or jog) of the dolerite from NNE to NNW (Figures 1 and 2). The NNW-trending faults are interpreted to be more dilated (open) at the time of the gold mineralising event thereby allowing the ingress of Au-bearing fluids. This is consistent with sinistral drag folding in the vicinity of the Claypan Shear apparent in aeromagnetic data.

This understanding upgrades the gold potential of **all** NNW-trending faults in the vicinity of the Claypan Shear, particularly the 4km-long, NNW-trending dolerite extending north of the highgrade gold mineralisation identified by the RC drilling. Phase 1 aircore drilling by Breaker in this area previously intersected altered and mineralised dolerite on an 80m drill hole spacing (Figure 1; ASX Release 26 August 2015).

The RC results also upgrade the gold potential of the untested NNW-trending mineralised zone on the granite contact to the east of the Claypan Shear, and explain significant oxidised lode mineralisation previously encountered in the BBRC0024-0025 area (Figures 2 and 3).

Detailed Geometry

The detailed geometry of high-grade mineralisation within the dolerite is unclear in some areas due to the wide-spaced nature of the drilling. To cost-effectively address this, downhole optical imaging is planned to assess structural orientations and guide future resource-orientated infill drilling.

Alteration/Host Rock Control

Gold mineralisation is associated with zones of faulting, potassic alteration (biotite, sericite), carbonate alteration and sulphide alteration (pyrite, pyrrhotite). High-grade (+3g/t) primary gold mineralisation is best developed in the fractionated western (uppermost Fe-rich) part of the dolerite where thick zones of granophyre are apparent. All RC holes that intersected this part of the dolerite encountered high-grade or anomalous primary gold mineralisation.

The confluence of structure and a favourable host rock in localising and controlling the geometry/plunge of significant gold mineralisation is a pattern repeated in many doleritehosted gold deposits in WA's Eastern Goldfields (eg. St Ives, Mt Charlotte, Three Mile Hill, Mt Pleasant, Salt Creek).

Geochemistry

The aircore geochemistry used to target the RC drilling is working. This validates the exploration targeting approach employed – using the intensity of oxide gold and other pathfinders mapped out by the aircore drilling as a vector to primary gold.

In general, elevated oxide gold zones and pathfinder elements outlined by the aircore drilling (Figure 3) correspond with alteration and structure but not all structures have significant primary gold mineralisation. The oxide gold, it appears, has not moved far from the primary bedrock source as a result of supergene (regolith) processes.

It is apparent that high-grade oxide gold in some areas (up to 24.9g/t) is not reflected in the primary zone (eg. BBRC0014-00015; BBRC0007-0008; Figures 2 and 3). This suggests that the RC drilling is not seeing all the primary gold due to the wide drill hole spacing. Selective infill aircore drilling and/or downhole optical imaging may clarify this.

Follow-up

A 4,000m program of infill aircore drilling extending 4km north of Bombora is planned to start in two to three weeks to assist RC drill targeting in this area. Downhole optical imaging of selected RC drill holes is planned to assess detailed geometry and structure.

Commentary on Results

Breaker Executive Chairman Tom Sanders said the RC drilling has met its key objectives. "We have discovered high-grade primary gold mineralisation in a greenfields setting that has capacity to deliver a gold deposit of scale."

"In addition, we have identified what appear to be the main variables that control the distribution of high-grade primary gold. In doing so, we have substantially improved the gold potential of the ground extending 4km northwards in addition to other areas."

"The decision to focus on Bombora six months ago rather than the 4km zone to the north was based on an assessment of the wide-spaced Phase 1 aircore drill results. The infill aircore and maiden RC drilling have not only successfully confirmed high grade primary gold but importantly have also assisted in narrowing the area of key focus in this large system."

"The lack of substantive primary gold in the southern part of Bombora now directs Breaker's exploration focus to the northern part of Bombora where significant grades have been intersected over a large area," Mr Sanders said.

Figure 3: Bombora Prospect, Lake Roe Project - Drill Hole Location Plan with <u>Thematic Down Hole Average Gold Values</u> and Selected Aircore Drill Intersections

Tom Sanders Executive Chairman Breaker Resources NL

18 April 2016

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

About Breaker

Breaker Resources NL is a significant tenement holder in WA's Eastern Goldfields Superterrane in the Yilgarn Craton. Breaker's objective is the discovery and development of large new, greenfields gold deposits. Its long-term exploration strategy focuses on the use of innovative multi-element geochemical techniques to identify new gold systems concealed by transported cover in unexplored parts of a world class gold province, WA's Eastern Goldfields Superterrane in the Yilgarn Craton. The Company's research and development project activities augment this strategy.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of The Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are officers or consultants of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1 - RC Drilling Results (New Results in Bold)

Hole No.	Prospect	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (a/t)	Sample
BBRC0001	Bombora	108	6600597	458622	315.7	-59	267.6	16	18	2	0.60	Split
			including					16	17	1	1.06	Split
BBRC0001	Bombora							21	40	19	1.12	Split
			including					22	23	1	0.39	Split
			including					25	26	1	0.30	Split
			including					29	35	6	3.19	Split
			including					29	34	5	3.69	Split
			including					31	34	3	5.23	Split
BBRC0002	Bombora	168	6600595	458697	315.7	-58.4	272.3	22	26	4	0.33	Split
		•	including					22	25	3	0.41	Split
			including					22	23	1	0.57	Split
BBRC0002	Bombora							31	33	2	0.68	Split
BBRC0002	Bombora							37	38	1	1.00	Split
BBRC0002	Bombora							46	48	2	0.90	Split
			including					46	47	1	1.56	Split
BBRC0002	Bombora							74	81	7	2.95	Split
			including					75	79	4	5.08	Split
BBRC0002	Bombora							118	119	1	0.12	Split
BBRC0003	Bombora	96	6600399	458609	316.0	-60.2	269.8	25	29	4	0.41	Split
			including					27	29	2	0.64	Split
BBRC0004	Bombora	144	6600298	458581	317.4	-60.3	276.3	17	18	1	0.14	Split
BBRC0004	Bombora							19	20	1	0.39	Split
BBRC0004	Bombora							34	35	1	0.21	Split
BBRC0005	Bombora	114	6600306	458788	316.0	-59.8	271.4	16	18	2	0.40	Split
		-	including					16	17	1	0.67	Split
BBRC0005	Bombora							46	56	10	0.98	Split
			including					46	47	1	5.15	Split
			including					50	55	5	0.83	Split
			including					51	55	4	0.95	Split
			including					51	52	1	1.16	Split
		r	including					53	54	1	1.08	Split
BBRC0006	Bombora	138	6600101	458772	317.2	-59.7	270.2	50	52	2	0.42	Split
		r	including					50	51	1	0.53	Split
BBRC0007	Bombora	144	6600112	458861	316.8	-59.2	272.4	24	30	6	0.69	Split
			including					24	29	5	0.80	Split
		1	including					24	26	2	1.25	Split
BBRC0007	Bombora							32	34	2	0.13	Split
BBRC0007	Bombora							38	39	1	0.87	Split
BBRC0007	Bombora							42	48	6	0.31	Split
			including					42	43	1	1.17	Split
		1	including					47	48	1	0.36	Split
BBRC0008	Bombora	180	6600113	458905	316.4	-59.8	269.9	29	32	3	0.68	Split
			including					29	31	2	0.85	Split
		1	including					30	31	1	1.00	Split
BBRC0009	Bombora	240	6600396	458803	316.3	-60.8	272.1	23	24	1	0.28	Split
BBRC0009	Bombora		<u> </u>					36	49	13	2.17	Split
			including					38	48	10	2.78	Split
			including					38	39		1.33	Split
			including					41	43	2	1.57	Split
			including					46	48	2	10.74	Split

Hole No.	Prospect	Total	North	East	RL	Dip	Azim	From	То	Width	Au	Sample
	Pomborg	Depth						(m)	(m)	(m)	(g/t)	Split
DDKC0007	BOINDOIG		including					152	104	12	0.43	spiit
			including					154	104	10	0.31	Split
			including					154	150	2	0.77	Split
			including					158	159	1	0.94	Splif
	Development	1	incluaing			<u> </u>		161	163	2	0.85	Splif
BBRC0009	Bombord							16/	168	1	0.15	Split
	Bomborg	144	4400205	450020	217.0	40.7	072.1	24	172	1	0.33	Composito
DDRC0010	Dombord	144	6600303	430732	317.2	-00.7	273.1	30	40	4	0.13	Composite
BRC0011	Bombora	174	6600299	458856	316.5	-60.2	272.4	17	19	2	0.31	Split
DDDC0011	Domboro		Including					17	18	1	0.39	Split
BBRC0011	Bombora							62	64	2	0.84	Split
BBRC0011	Bombora							93	94 139	1	0.10	Split
BBRC0011	Bomborg							142	145	3	0.10	Split
DDRCOUTT	BOINDOIG		including					142	145	3	0.36	spiit
0000011	Dambana		Including			1		143	143	2	0.72	Spill Calib
BBRC0011	Bombora		in a hualin a					158	167	9	0.98	Split
			including					160	165	5	1.66	Split
			including					160	164	4	1.96	Split
			including					161	164	3	2.38	Split
	Domborg		Including					161	162	1	4.11	Split
BBRCOUTT	Bornbord	0(4	((00100	450000	217 5	10.1	070.0	1/3	174	I	0.10	Splif
BBRCOUTZ	Bombord	264	6600199	438829	317.5	-60.6	272.2	169	175	0	0.31	Split
			including					172	173	3	0.49	spili Spilit
			including					174	175	1	0.52	spili Spilit
		1	incluaing			<u> </u>		1/4	1/5	1	0.82	spilt
BBRC0012	Bombora							192	202	10	2.00	Split
			including					192	200	8	2.43	Split
			including					192	197	5	3.35	Split
			including					193	197	4	3.83	Split
DDDC001 2	Domboro	2/0	Including	450000	21/ F	50.2	272.2	199	200	1	2.17	Split
BBRC0013	Bombora	260	0599800	458893	310.5	-59.3	212.2	21	23	2	0.19	Spiit
BBRC0013	Bombora							40	43	3	0.14	Spilt
BBRC0013	Bombora		including					184	191	1	0.18	Spiit
PPDC0012	Pomboro							100	187	0	0.48	Split
DDKCUUIS	DUIIDUIA		including					190	100	0	0.24	Split
			including					202	204	1	0.35	Split
BBDC0014	Rombora	169	4500800	450055	216 /	-50.0	272 1	203	204	12	1 / 2	Split
DDRC0014	Dombola	100	including	437033	310.4	-37.7	272.4	20	37	10	1.43	Split
			including					20	27	10	1.01	Split
			including					20	27	3	1.57	Split
BBPC0015	Bombora	270	6599800	459174	316 1	-59.3	270.3	32	33	3	8.52	Split
DDICCOUTS	Dombola	270	including	437174	510.1	-37.3	270.5	21	22	2	12 74	Split
			including					21	33	1	2/ 01	Split
BBRC0015	Bombora							48	49	1	0.50	Split
BBRC0016	Bombora	126	6500708	159317	316.8	-59.6	271 /	45	51	6	0.30	Split
DDICCOUTO	Dombola	120	including	437347	510.0	-37.0	271.4	45	16	1	0.24	Split
BBRC0014	Bombora					<u> </u>		56	60	1	0.34	Split
BBRC0017	Bombora	252	6600237	459237	314 5	-55.2	272 6	140	150	ד 1	0.10	Spiit
BBRC0017	Bombora	252	5555237	757251	517.5	33.2	212.0	156	157	1	0.1/	Spiit
BBRC0017	Bombora							158	160	2	0.24	Split
BBRC0017	Bombora							164	172	8	0.50	Split
22100017	Domoora	1	including			1	1	167	172	5	0.69	Split
			including					167	168	1	1 27	Split
<u> </u>			idaniy					107			1	ohir

Hole No.	Prospect	Total Depth	North	East	RL	Dip	Azim	From	To (m)	Width (m)	Au (a/t)	Sample
BBRC0017	Bombora	Depui						182	184	2	1.22	Split
			including					182	183	1	1.65	Split
BBRC0018	Bombora	234	6599694	458858	319.2	-60.2	270.5	20	22	2	0.24	Split
		•	including					21	22	1	0.30	Split
BBRC0018	Bombora							186	191	5	0.26	Split
			including					189	190	1	0.74	Split
BBRC0018	Bombora							200	204	4	0.29	Split
			including					200	201	1	0.65	Split
BBRC0018	Bombora							208	213	5	0.29	Split
			including					208	210	2	0.34	Split
			including					211	212	1	0.32	Split
BBRC0019	Bombora	174	6599700	459022	315.9	-60	275.1	32	40	8	0.44	Composite
BBRC0020	Bombora	264	6599599	458817	319.8	-59.7	272.2	100	108	8	0.25	Composite
		,	including			r		100	104	4	0.32	Composite
BBRC0021	Bombora	228	6599599	459149	316.6	-59.9	271.1	40	44	4	0.10	Composite
BBRC0021	Bombora							96	100	4	0.10	Composite
BBRC0022	Bombora	191	6599199	459867	316.9	-60.1	88.09	64	70	6	0.29	Composite; 68-
			including					69	70	1	0.60	Split
BBRC0022	Bombora							77	78	1	0.12	Split
BBRC0023	Bombora	150	6599195	459773	318.0	-60	90.29	64	68	4	0.19	Composite
BBRC0023	Bombora							76	80	4	0.26	Composite
BBRC0024	Bombora	234	6598900	459179	320.1	-59.8	269.2	28	32	4	0.11	Composite
BBRC0024	Bombora							40	44	4	0.14	Composite
BBRC0024	Bombora							52	60	8	0.16	Composite
BBRC0026	Bombora	198	6599001	459142	321.0	-60.1	271.5	16	40	24	0.51	Composite
including							16	28	12	0.59	Composite	
			including					20	32	12	0.85	Composite
			including					24	32	8	1.12	Composite
DDD 0000(D 1	1	incluaing			1		28	32	4	1.67	Composite
BBRC0026	Bombora							55	56	1	0.11	Split
BBRC0026	Bombora							03 45	04 44	1	0.14	Split
BBBC0026	Bombora							00 162	162	1	0.11	Split
BBRC0020	Bombora	108	6500108	459124	310.8	-60.4	270	102	32	20	0.14	Composite
DDRC0020	Dombola	100	including	437124	317.0	-00.4	270	16	20	20	0.43	Composite
			including					24	28	4	0.03	Composite
BBRC0028	Bombora							34	37	3	0.11	Split
BBRC0028	Bombora							40	41	1	0.12	Split
BBRC0028	Bombora							42	44	2	0.22	Split
BBRC0029	Bombora	120	6599399	458899	320.0	-60.9	270.2	36	40	4	0.38	Composite
BBRC0029	Bombora							44	60	16	0.39	Composite
			including					52	60	8	0.59	Composite
			including					52	56	4	0.68	Composite
BBRC0031	Bombora	162	6599600	459061	316.2	-60.1	273.5	48	56	8	0.22	Composite
BBRC0032	Bombora	150	6599601	459252	315.8	-60	270.6	20	24	4	0.20	Composite
BBRC0032	Bombora							32	36	4	0.18	Composite
BBRC0035	Bombora	228	6600502	458800	316.5	-59.9	272	60	64	4	2.28	Composite
BBRC0035	Bombora							68	72	4	0.29	Composite
BBRC0035	Bombora							76	84	8	0.13	Composite
BBRC0035	Bombora					<u> </u>		88	92	4	0.17	Composite
BBRC0035	Bombora							144	156	12	0.42	Composite
	_	1	including			r		144	152	8	0.48	Composite
BBRC0036	Bombora	286	6600203	458940	316.4	-59.9	271.4	204	208	4	0.33	Composite
BBRC0036	Bombora							284	286	2	0.57	Composite

Notes

- New results in bold.
- One metre results are pending for all composite samples.
- Cut-off grade of 0.1g/t (100ppb Au) applied due to the greenfields nature of the drilling (details provided in Annexure 1).
- The mineralised widths shown are downhole distances. The estimated true width is interpreted to be approximately 70% of the downhole interval but this is provisional and subject to change given the preliminary nature of the drilling.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	36 reverse circulation (RC) holes completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer mounted cyclone by a green plastic bag in 1m intervals and the dry sample was riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Drill hole collars were picked up using handheld GPS and corrected/checked for elevation using elevation data from a detailed aeromagnetic survey.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	n/a
and sample preparation	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected
		via spear sampling of the riffle split bulk

Criteria	JORC Code explanation	Commentary
		sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with field sample duplicates.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ	Sample duplicates were taken three times in every 100 samples.
	material collected, including for instance results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
16212	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness
		were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75µm was being attained. Laboratory QAQC involved the use of internal lab standards

Criteria	JORC Code explanation	Commentary
		using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	<i>The verification of significant intersections by either independent or alternative company personnel.</i>	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	None undertaken in this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff and assay results are merged with the primary data using established database protocols.
	Discuss any adjustment to assay data.	No adjustments were undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars were located by handheld GPS. Elevation values are in AHD and were corrected using the DEM- S data from the 1 second SRTM Derived Digital Elevation Models sourced from Geoscience Australia. Expected accuracy is +/- 4m for easting, northing and +/- 10m elevation coordinates.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	Hole pickups were undertaken using a handheld GPS (see comments above). This is considered acceptable for these regional style exploration activities.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The 36 RC drill holes were not spaced in a regular grid pattern however occurred in an area approximately 2km by 1km on existing 100m spaced AC drill lines.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill density is not adequate at this stage to define grade continuity and geological continuity to support classification as a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all holes via spearing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling (-60 towards 270/grid west) has confirmed the interpreted east dipping stratigraphy (based from field mapping) minimising lithological bias. At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If the relationship between the drilling	No conclusive orientation-based

Criteria	JORC Code explanation	Commentary
	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	sampling bias has been identified in the data to this point.
Sample security	<i>The measures taken to ensure sample security.</i>	RC samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits/reviews have been conducted on sampling technique to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC drill holes were located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially on the sheared and altered contacts of an 800m wide fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill note Information	A summary of all information material to the understanding of the exploration results	from the RC drilling.
	 including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	Drill hole locations are described in the body of the text and on related Figures.
		The use of low level geochemical information to identify anomalous trends and "footprints" rather than reporting of individual values is considered appropriate in locating and mapping geological and geochemical anomalous trends that potentially identify target areas for follow up drilling.
 hole length. If the exclusion of this information is on the basis that the information is Material and this exclusion does no detract from the understanding of report, the Competent Person shou clearly explain why this is the case. 	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A nominal 0.1g/t Au lower cut-off is reported as being material in the context of the grassroots geological setting.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported RC assays have been length weighted. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Arithmetic length weighting used.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and	These relationships are particularly important in the reporting of Exploration Results.	At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
intercept lengths	respect to the drill hole angle is known, its nature should be reported.	The angled orientation of RC drilling may introduce some sampling bias (increasing the intercept width of flat
	lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	lying or vertical mineralisation). All drill hole intercepts are measured in downhole metres
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above a 0.1g/t lower cut-off are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	