

ASX ANNOUNCEMENT

10 May 2016

Final RC Results Upgrade Potential for Major Gold Discovery, Lake Roe Gold Project, WA

- Results up to 9.59g/t gold received from the final holes in the maiden reconnaissance RC drilling at Lake Roe Gold Project, 100km east of Kalgoorlie
- ➤ Latest results further highlight the presence of strong primary gold mineralisation over a ~500m strike length in northern part of Bombora Prospect (open to north)
- The presence of strong primary gold confirms the gold fertility of a new greenfields setting
- The RC results also clarify the broad controls on primary gold distribution at Bombora

 the key to finding more gold
- Strong mineralisation is associated with the interaction of NNW-trending faults and the Fe-rich, western part of the dolerite host rock (a common theme in many significant gold deposits)
- ➤ The results enhance the gold potential directly north of the high-grade gold mineralisation, where NNW trends and Fe-rich dolerite are present and significant gold mineralisation has previously been identified over a 4km strike length on a wide (80m) hole spacing
- ➤ An infill aircore drill program of ~7,000m is planned to start ~12 May 2016 to scope the 4km zone north of Bombora in preparation for RC and/or diamond drilling

Lake Roe Project – BBRC0001 Bombora North

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au

Website: www.breakerresources.com.au

ASX Code: BRB ACN: 145 011 178

Introduction/Background

Breaker Resources NL (ASX: BRB, **Breaker**) is pleased to provide a final update on a recently completed reverse circulation (**RC**) drill program at its 100%-owned Lake Roe Gold Project following the receipt of assay results of 1m sample splits for the last 18 holes of the 36 hole program.

The 6,703m program of reconnaissance RC drilling was completed at the Bombora Prospect on 26 March 2016. The main objectives of the drilling were to scope the intensity and distribution of primary gold over a 2.2km x 1.0km area, and to clarify the broad controls on gold mineralisation where possible.

Bombora is situated in the southern 2km part of a 6km-long zone of gold mineralisation identified by Breaker's initial reconnaissance aircore drilling in the area (August 2015). Mineralisation is hosted by a thick compositionally zoned (fractionated) dolerite situated to the immediate west of the Claypan Shear Zone, a major regional shear zone.

RC Drill Program/Results

RC drill holes are located on Figure 1. Details of the RC drill program are provided in the Company's ASX announcement of 18 April 2016. Additional information relating to the RC drilling is summarised in Annexure 1 and Appendix 1.

New results summarised in Appendix 1 relate to one metre sample split assay results for drill holes BBRC0010 and BBRC0019-0036. Assay results are now final for all holes (BBRC0001-0036).

RC drill holes colour-coded by downhole average gold are shown on Figure 1 to provide a visual summary of results.

Analysis of RC Drill Results

Drill intersections up to 9.59g/t gold reinforce the presence of strong primary gold mineralisation over a ~500m strike length in the northern part of Bombora Prospect (open to the north). The gold distribution, summarised in Figure 1, indicates that strong gold mineralisation is associated with the confluence of NNW-trending faults and the Fe-rich, western part of the dolerite host rock.

NNW-trending faults occur mainly to the north of a "bend" in the dolerite where the prevailing lithological and structural trend changes from NNE to NNW. NNW-trending faults are also present in vicinity of the Claypan Shear and elsewhere (Figures 1 and 3).

The union of structure and a favourable host rock in localising and controlling the geometry/plunge of gold mineralisation is a pattern repeated in many dolerite-hosted gold deposits in WA's Eastern Goldfields (eg. St Ives, Mt Charlotte, Three Mile Hill, Mt Pleasant, Salt Creek).

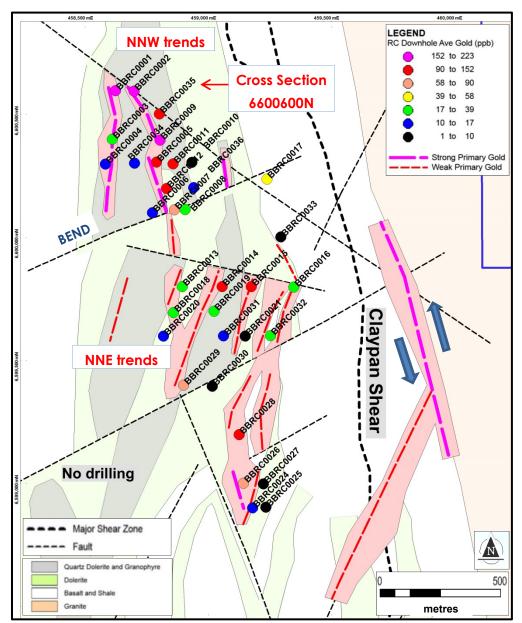


Figure 1: Bombora Prospect RC Drill Holes Colour-Coded by Downhole Average Gold with Interpreted Geology

NNW structural trends are interpreted to be more mineralised as they open (dilate) in an east-block-north (sinistral) structural regime, allowing ingress of gold-bearing fluids. The Fe-rich nature of the dominant host rock assists in forming Fe-sulphide and precipitating gold in the process.

These results significantly enhance the potential for extensions directly north of the high-grade gold mineralisation, where the favourable controls are in place and significant gold mineralisation has previously been identified over a 4km distance on a wide (80m) hole spacing (Figure 3; ASX Release 26 August 2015).

In addition, *all* NNW-trending faults are potentially more mineralised, including the sheared and altered granite contact to the east of the Claypan Shear, where drill intersections such as 7m at 2.58g/t gold (including 1m at 16.12g/t Au) have previously been reported on a very wide (80m) drill spacing (ASX Release 16 March 2016).

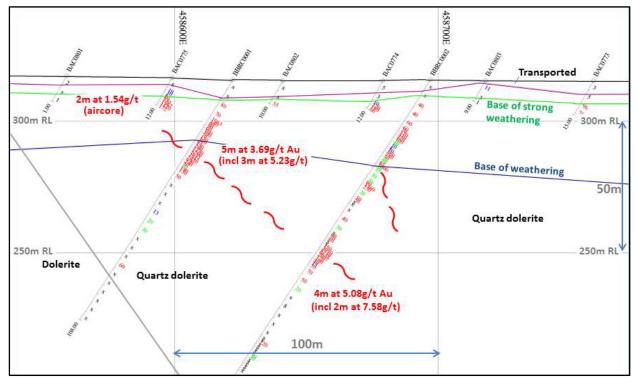


Figure 2: Bombora Prospect Northernmost Cross Section 6600600N (looking north; downhole grades in ppb)

Next Steps

An infill aircore drill program of \sim 7,000m is planned to start \sim 12 May 2016 to scope the 4km zone extending north of Bombora in preparation for RC and/or diamond drilling (Figure 3). The drilling will test the Fe-rich part of the dolerite over a 4km distance directly north of the high-grade gold lodes at Bombora on a line spacing of 200m and a hole spacing of either 20m or 40m, depending on the depth of weathering. The program may be varied based on new information.

Downhole optical imaging of selected RC drill holes in the Bombora area is also planned in key areas to clarify detailed geometry and structure, an aspect that is particularly important at this very early stage of this project given the wide-spaced nature of the drilling (Figures 1 and 2).

Commentary on Results

Breaker Executive Chairman Tom Sanders said: "The RC results enhance the potential for a gold discovery of scale. We have discovered high-grade primary gold and have identified what appear to be the main controls on its distribution thereby meeting all our objectives. The system scoping process has worked."

"The knowledge gleaned lays the platform for finding more gold in a new gold system which has the attributes of structure, alteration, grade and size and continuity."

"More significantly, the results upgrade the gold potential of the 4km zone that we are about to drill, and the gold potential of the altered granite contact to the east of the Claypan Shear. In each area we already have significant drill intersections on a very wide hole spacing so in a probabilistic sense, I like the odds."

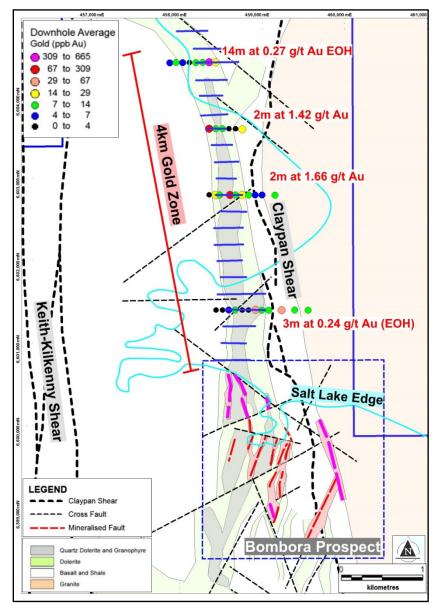


Figure 3: Bombora Prospect Location Plan with Selected Phase 1 Aircore Drill Results (Blue lines represent planned aircore drill lines; Phase 1 aircore results in ASX Release 26 August 2015)

Tom Sanders

Executive Chairman Breaker Resources NL

10 May 2016

For further information on Breaker Resources NL please visit the Company's website at www.breakerresources.com.au, or contact:

Tom Sanders

Tel: +61 8 9226 3666

Email: breaker@breakerresources.com.au

About Breaker

Breaker Resources NL is a significant tenement holder in WA's Eastern Goldfields Superterrane in the Yilgarn Craton. Breaker's objective is the discovery and development of large new, greenfields gold deposits. Its long-term exploration strategy focuses on the use of innovative multi-element geochemical techniques to identify new gold systems concealed by transported cover in unexplored parts of a world class gold province, WA's Eastern Goldfields Superterrane in the Yilgarn Craton. The Company's research and development project activities augment this strategy.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of The Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are officers or consultants of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1 - RC Drilling Results (New Results in Bold)

Hole No.	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample
BBRC0001	108	6600597	458622	315.7	-59.0	267.6	16	18	2	0.60	Split
1			including				16	17	1	1.06	Split
BBRC0001							21	40	19	1.12	Split
		i	including				22	23	1	0.39	Split
		i	including				25	26	1	0.30	Split
			including				29	35	6	3.19	Split
			including				29	34	5	3.69	Split
			including		1	1	31	34	3	5.23	Split
BBRC0002	168	6600595	458697	315.7	-58.4	272.3	22	26	4	0.33	Split
			including				22	25	3	0.41	Split
		<u> </u>	including		1	ı	22	23	1	0.57	Split
BBRC0002							31	33	2	0.68	Split
BBRC0002							37	38	1	1.00	Split
BBRC0002		<u> </u>					46	48	2	0.90	Split
		1	including		ı	I	46	47	1	1.56	Split
BBRC0002		L .					74	81	7	2.95	Split
BBB 60000			including		1	1	75	79	4	5.08	Split
BBRC0002	07	//00200	450700	217.0	/0.0	0/0.0	118	119	1	0.12	Split
BBRC0003	96	6600399	458609 including	316.0	-60.2	269.8	25 27	29 29	2	0.41	Split Split
DDDC0004	1 4 4	6600298	458581	217.4	/0.2	27/2	17	18			
BBRC0004 BBRC0004	144	0000278	4J0J81	317.4	-60.3	276.3	17	20	1	0.14	Split Split
BBRC0004							34	35	1	0.37	Split
BBRC0004	114	6600306	458788	316.0	-59.8	271.4	16	18	2	0.40	Split
DDRCOOOD	114		including	310.0	-57.0	2/1.4	16	17	1	0.40	Split
BBRC0005			licioaling				46	56	10	0.98	Split
BBRCOOOO			including				46	47	1	5.15	Split
			including				50	55	5	0.83	Split
			including				51	55	4	0.95	Split
			including				51	52	1	1.16	Split
			including				53	54	1	1.08	Split
BBRC0006	138	6600101	458772	317.2	-59.7	270.2	50	52	2	0.42	Split
			including			ı	50	51	1	0.53	Split
BBRC0007	144	6600112	458861	316.8	-59.2	272.4	24	30	6	0.69	Split
		i	including			•	24	29	5	0.80	Split
		i	including				24	26	2	1.25	Split
BBRC0007							32	34	2	0.13	Split
BBRC0007							38	39	1	0.87	Split
BBRC0007							42	48	6	0.31	Split
			including				42	43	1	1.17	Split
			including		1	1	47	48	1	0.36	Split
BBRC0008	180	6600113	458905	316.4	-59.8	269.9	29	32	3	0.68	Split
			ncluding				29	31	2	0.85	Split
DDD 00000	0.15		including	01.75	10.5	070 -	30	31	1	1.00	Split
BBRC0009	240	6600396	458803	316.3	-60.8	272.1	23	24	1	0.28	Split
BBRC0009		L .	in aludia s				36	49	13	2.17	Split
			including				38	48	10	2.78	Split
			including				38	39	1	1.33	Split
			including including				41	43 48	2	1.57	Split
BBRC0009			ricioairig				46 152	164	2 12	10.74 0.45	Split Split
אטערטטטא		<u> </u>	including		1		154	164	10	0.45	Split
including including						154	156	2	0.51	Split	
			including				158	159	1	0.77	Split
			including				161	163	2	0.85	Split
BBRC0009							167	168	1	0.05	Split
BBRC0009							171	172	1	0.33	Split
BBRC0010	144	6600305	458932	317.2	-60.7	273.1	36	40	4	0.13	Composite
25KC0010			ncluding	017.2	00.7	2,0.1	38	40	2	0.19	Split
			iiciuaing				აგ	40	2	0.17	Spiii

Hole No.	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample
BBRC0011	174	6600299	458856	316.5	-60.2	272.4	17	19	2	0.31	Split
			including		•		17	18	1	0.39	Split
BBRC0011							62	64	2	0.84	Split
BBRC0011							93	94	1	1.86	Split
BBRC0011							137	138	1	0.10	Split
BBRC0011							142	145	3	0.56	Split
			including				143	145	2	0.72	Split
BBRC0011							158	167	9	0.98	Split
			including				160	165	5	1.66	Split
			including				160	164	4	1.96	Split
			including including				161 161	164 162	3	2.38 4.11	Split Split
BBRC0011		1	lincloaling			1		174	1	0.10	
BBRC0011	264	6600199	458829	317.5	-60.6	272.2	173 169	174	6	0.10	Split Split
DBRCOUTZ	204		including	317.3	-00.0	2/ 2.2	172	175	3	0.49	Split
			including				172	173	1	0.52	Split
			including				174	175	1	0.82	Split
BBRC0012			li icioali ig				192	202	10	2.00	Split
		1	including		1	l	192	200	8	2.43	Split
			including				192	197	5	3.35	Split
			including				193	197	4	3.83	Split
			including				199	200	1	2.17	Split
BBRC0013	260	6599800	458893	316.5	-59.3	272.2	21	23	2	0.19	Split
BBRC0013							40	43	3	0.14	Split
BBRC0013							184	191	7	0.18	Split
			including				186	187	1	0.48	Split
BBRC0013							196	204	8	0.24	Split
			including				198	199	1	0.35	Split
			including				203	204	1	0.62	Split
BBRC0014	168	6599800	459055	316.4	-59.9	272.4	26	39	13	1.43	Split
			including				26	36	10	1.81	Split
			including				26	27	1	1.57	Split
			including				32	35	3	4.62	Split
BBRC0015	270	6599800	459174	316.1	-59.3	270.3	31	34	3	8.53	Split
			including				31	33	2	12.74	Split
			including				31	32	1	24.91	Split
BBRC0015							48	49	1	0.50	Split
BBRC0016	126	6599798	459347	316.8	-59.6	271.4	45	51	6	0.24	Split
DDDC0017			including			1	45	46	1	0.34	Split
BBRC0016	0.50	//00007	450007	01.4.5	55.0	070 /	56	60	4	0.18	Split
BBRC0017	252	6600237	459237	314.5	-55.2	272.6	149	150	1	0.91	Split
BBRC0017							156	157	1	0.14	Split
BBRC0017 BBRC0017							158 164	160 172	8	0.24 0.50	Split Split
DBRC0017			I including			l	167	172	5	0.69	Split
			including				167	168	1	1.27	Split
BBRC0017			i iciodii ig			l	182	184	2	1.22	Split
אומפ		1	I including	<u> </u>	<u> </u>	l	182	183	1	1.65	Split
BBRC0018	234	6599694		319.2	-60.2	270.5	20	22	2	0.24	Split
	207		including	U17.2	00.2	_, 0.0	21	22	1	0.30	Split
BBRC0018							186	191	5	0.26	Split
00010		1	including	<u> </u>	<u>I</u>	<u> </u>	189	190	1	0.74	Split
BBRC0018							200	204	4	0.29	Split
		•	including		1	•	200	201	1	0.65	Split
BBRC0018							208	213	5	0.29	Split
			including				208	210	2	0.34	Split
			including				211	212	1	0.32	Split
BBRC0019	174	6599700	459022	315.9	-60.0	275.1	35	39	4	0.69	Split
			including				35	37	2	1.19	Split
			including				36	37	1	1.44	Split
BBRC0020	264	6599599		319.8	-59.7	272.2	102	106	4	0.59	Split
DD1/C0020	204		including	517.0	-37.7	2,2.2	102	105	3		
							_			0.72	Split
			including				102	104	2	0.84	Split
BBRC0021	228	6599599	459149	316.6	-59.9	271.1	36	37	1	0.10	Split
BBRC0021							39	41	2	0.22	Split
BBRC0021		1	I			ĺ	96	97	1	0.26	Split

Hole No.	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (g/t)	Sample
BBRC0022	191	6599199	459867	316.9	-60.1	88.1	64	70	6	0.34	Split
		i	ncluding				64	65	1	0.97	Split
including							69	70	1	0.60	Split
BBRC0022							77	78	1	0.12	Split
BBRC0023	150	6599195	459773	318.0	-60.0	90.3	65	66	1	0.45	Split
BBRC0023			ncluding			l	75 75	80 76	5 1	0.30	Split Split
			ncluding				77	79	2	0.36	Split
			ncluding				78	79	1	0.58	Split
BBRC0024	234	6598900		320.1	-59.8	269.2	28	29	1	0.35	Split
BBRC0024							53	54	1	0.35	Split
BBRC0024							59	60	1	0.60	Split
BBRC0026	198	6599001	459142	321.0	-60.1	271.5	17	40	23	0.47	Split
			ncluding				20	22	2	0.35	Split
			ncluding				26	33	7	1.11	Split
		i	ncluding	1	1	ı	27	32	5	1.42	Split
BBRC0026							55	56	1	0.11	Split
BBRC0026							63	64	1	0.14	Split
BBRC0026 BBRC0026							65 162	66 163	1	0.11 0.14	Split Split
BBRC0028	108	6599198	459124	319.8	-60.4	270.0	14	32	18	0.50	Split
DDROUZO	100		ncluding	017.0	00.4	270.0	15	28	13	0.63	Split
			ncluding				15	20	5	0.82	Split
		i	ncluding				15	16	1	1.13	Split
		i	ncluding				17	18	1	1.42	Split
		i	ncluding				19	20	1	1.01	Split
		i	ncluding				22	23	1	0.63	Split
			ncluding				26	28	2	1.13	Split
		i	ncluding		ı		27	28	1	1.74	Split
BBRC0028							34	37	3	0.11	Split
BBRC0028							40	41	1	0.12	Split
BBRC0028	100	/500300	450000	200.0	/0.0	270.0	42	44	2	0.22	Split
BBRC0029 BBRC0029	120	6599399	458899	320.0	-60.9	270.2	37 42	39 43	1	0.76 0.19	Split Split
BBRC0029							46	47	1	0.17	Split
BBRC0029							49	59	10	0.62	Split
		i	ncluding		I		51	58	7	0.81	Split
		i	ncluding				52	57	5	0.97	Split
		i	ncluding				52	54	2	1.37	Split
		i	ncluding				56	57	1	1.64	Split
BBRC0031	162	6599600	459061	316.2	-60.1	273.5	51	54	3	0.57	Split
			ncluding				51	52	1	0.59	Split
			ncluding		I		53	54	1	1.07	Split
BBRC0032	150	6599601		315.8	-60.0	270.6	20	23	3	0.27	Split
BBRC0032		I	ncluding			1	22	23	1	0.50	Split
DBKC0032		<u> </u>	ncluding	<u> </u>	<u> </u>	l	33 34	36 35	3 1	0.25 0.41	Split Split
BBRC0035	228	6600502		316.5	-59.9	272.0	60	62	2	5.00	Split
			ncluding		, <i>5,.,</i>	,	60	61	1	9.59	Split
BBRC0035							69	70	1	0.81	Split
BBRC0035							77	85	8	0.25	Split
		i	ncluding				79	80	1	0.46	Split
		i	ncluding				81	82	1	1.01	Split
BBRC0035							88	89	1	0.71	Split
BBRC0035							145	156	11	0.35	Split
			ncluding				145	148	3	0.58	Split
			ncluding				145	146	1	0.89	Split
			ncluding				151	152	1	0.80	Split
DDD COCC.	007		ncluding	23.4.4	50.0	071.4	154	156	2	0.36	Split
BBRC0036	286	6600203		316.4	-59.9	271.4	205	207	2	0.39	Split
BBRC0036		I	ncluding			1	206 284	207 286	2	0.56 0.45	Split Split
סרייסטעם אמים			ncluding	<u> </u>	<u> </u>	<u> </u>					-
			ncivaing				285	286	1	0.78	Split

Notes

- New results in bold.
- ▼ One metre results are pending for all composite samples.
- ▼ Cut-off grade of 0.1g/t (100ppb Au) applied due to the greenfields nature of the drilling (details provided in Annexure 1).
- Mineralised widths shown are downhole distances. The estimated true width is interpreted to be approximately 70% of the downhole interval but this is provisional and subject to change given the preliminary nature of the drilling.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

C.::1:: -:	long Carla and markan	Common and arms
Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	36 reverse circulation (RC) holes completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer mounted cyclone by a green plastic bag in 1m intervals and the dry sample was riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Drill hole collars were picked up using handheld GPS and corrected/checked for elevation using elevation data from a detailed aeromagnetic survey.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face-sampling percussion hammer with 5½" bits.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	n/a
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g subsample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with field sample duplicates.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ	Sample duplicates were taken three times in every 100 samples.
	naterial collected, including for instance esults for field duplicate/second-half ampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	None undertaken in this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff and assay results are merged with the primary data using established database protocols.
	Discuss any adjustment to assay data.	No adjustments were undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars were located by handheld GPS. Elevation values are in AHD and were corrected using the DEMS data from the 1 second SRTM Derived Digital Elevation Models sourced from Geoscience Australia. Expected accuracy is +/- 4m for easting, northing and +/- 10m elevation coordinates.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	Hole pickups were undertaken using a handheld GPS (see comments above). This is considered acceptable for these regional style exploration activities.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The 36 RC drill holes were not spaced in a regular grid pattern however occurred in an area approximately 2km by 1km on existing 100m spaced AC drill lines.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill density is not adequate at this stage to define grade continuity and geological continuity to support classification as a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all holes via spearing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling (-60 towards 270/grid west) has confirmed the interpreted east dipping stratigraphy (based from field mapping) minimising lithological bias. At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No conclusive orientation-based sampling bias has been identified in the data to this point.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	RC samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits/reviews have been conducted on sampling technique to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC drill holes were located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially on the sheared and altered contacts of an 800m wide fractionated

Criteria	JORC Code explanation	Commentary
		dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
Drill hole	A support of all information material to	The exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Appendix 1 for significant results from the RC drilling. Drill hole locations are described in the
	 easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	body of the text and on related Figures. The use of low level geochemical information to identify anomalous trends and "footprints" rather than reporting of individual values is considered appropriate in locating and mapping geological and geochemical anomalous trends that potentially identify target areas for follow up drilling.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A nominal 0.1 g/t Au lower cut-off is reported as being material in the context of the grassroots geological setting.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported RC assays have been length weighted. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Arithmetic length weighting used.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with	At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
intercept lengths	respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a	The angled orientation of RC drilling may introduce some sampling bias (increasing the intercept width of flat lying or vertical mineralisation).
	clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above a 0.1g/t lower cut-off are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.