

ASX ANNOUNCEMENT

Final assays confirm significant widths and high grades at Bombora North discovery in WA

Drilling underway to establish continuity of mineralisation between the Bombora and Bombora North discoveries, targeting a total strike length of 2.2km, ahead of resource drilling

Key Points

- Final 1m sample results received from maiden reconnaissance RC drilling program at Bombora North discovery, 100km east of Kalgoorlie, include:
 - 18m @ 2.97g/t Au including 10m @ 5.03g/t or 3m @ 14.59g/t or 2m @ 20.09g/t;
 - 18m @ 2.16g/t Au including 12m @ 3.06g/t or 3m @ 6.18g/t and 1m @ 12.60g/t;
 - 9m @ 2.26g/t Au including 5m @ 3.13g/t;
 - 10m @ 1.82g/t Au including 4m @ 3.57g/t or 1m @ 10.88g/t;
 - 12m @ 1.36g/t Au including 5m @ 3.13g/t; and
 - 33m @ 0.81g/t Au including 8m @ 1.94g/t
- The results outline mineralisation with significant widths and high grades over a 600m strike length within the 4.4km target zone (open to north, south and at depth)
- Clear potential for both large-tonnage, open pit mining or high-grade underground mining, with results such as 2m @ 20.09g/t, 1m @ 12.60g/t, 1m @ 10.88g/t and 3m @ 6.18g/t
- RC drilling in progress with aim of linking the Bombora North and Bombora discoveries to establish a 2.2km strike length of gold mineralisation in preparation for resource delineation drilling
- RC drilling is planned to test a further 2.2km zone to the north of Bombora North; aircore drilling in this northern area previously returned intersections up to 7.61g/t Au with strong alteration and strike-continuous gold pathfinder elements
- Diamond drilling underway has confirmed the presence of lamprophyre; these are relatively rare, deeply-sourced ultra-potassic intrusive rocks with a common spatial association with large Archean gold deposits (eg. Golden Mile, Darlot, Superior Province in Canada)

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Overview

Breaker Resources NL (ASX: BRB, **Breaker**) is pleased to advise that final 1m assay results from reverse circulation (**RC**) drilling at the Bombora North discovery within the Lake Roe Project in WA has upgraded the previous (preliminary) results (see ASX Release 15 August 2016).

Significant gold mineralisation was intersected on each of the six drill lines tested as part of the maiden RC program at Bombora North (Figure 1, Appendix 1). The grade characteristics of the drill intersections obtained highlight strong potential for large tonnage, open pit mining (Table 1). This view is underpinned by the unusually large dimensions of the gold-mineralised areas outlined to date.

The presence of significant high-grade gold intersections in these maiden RC results (Table 1) at Bombora North and at the Bombora discovery to the south (ASX Releases 16 March 2016 & 18 April 2016) also indicates strong potential for underground mining. High-grade gold intersections include 2m @ 20.09g/t, 1m @ 12.60g/t, 1m @ 10.88g/t and 3m @ 6.18g/t Au.

In addition, the sulphide-lode style of mineralisation present often translates to substantial depth potential based on similar gold deposits in other parts of WA's Eastern Goldfields. This, in conjunction with the large dimensions of the gold-mineralised area outlined at Lake Roe, suggests that the underground mining potential may also be substantial.

		RC Drill In	ntersections in Possible	Open P	it Minir	ng Scenario	RC Drill In	tersections in Possible Ur	ndergroun	d Minii	ng Scenario
Hole No.	North		Intercept	From (m)	To (m)	Comment		Intercept	From (m)	To (m)	Comment
BBRC0038	6602000		33m @ 0.78 g/t Au	8	41	New		1m @ 3.78 g/t Au	33	34	Previous
		including	10m @ 1.62 g/t Au	31	41	Previous	and	1m @ 3.43 g/t Au	36	37	Previous
		including	8m @ 1.94 g/t Au	31	39	Previous					
		including	1m @ 2.38 g/t Au	31	32	Previous					
BBRC0045	6602100		12m @ 1.36 g/t Au	22	34	New		3m @ 3.86 g/t Au	23	26	New
		including	7m @ 2.14 g/t Au	22	29	New					
		including	5m @ 2.83 g/t Au	22	27	New					
BBRC0045	6602100		9m @ 2.26 g/t Au	59	68	New		5m @ 3.13 g/t Au	62	67	New
		including	6m @ 2.89 g/t Au	62	68	New	including	2m @ 4.53 g/t Au	62	64	New
			-				and	1m @ 3.72 g/t Au	66	67	New
BBRC0048	6602200		10m @ 1.04 g/t Au	31	41	New		1m @ 3.09 g/t Au	34	35	New
		including	7m @ 1.16 g/t Au	34	41	New	1 1				
		including	4m @ 1.73 g/t Au	34	38	New					
BBRC0049	660220		18m @ 2.97 g/t Au	12	30	New		10m @ 5.03 g/t Au	20	30	New
		including	10m @ 5.03 g/t Au	20	30	New	including	4m @ 11.48 g/t Au	24	28	New
							including	3m @ 14.59 g/t Au	24	27	New
							including	2m @ 20.09 g/t Au	25	27	New
BBRC0049	6602200		6m @ 2.08 g/t Au	64	70	Previous		1m @ 5.84 g/t Au	64	65	Previous
		including	5m @ 2.45 g/t Au	64	69	Previous	and	1m @ 3.95 g/t Au	67	68	Previous
		including	4m @ 2.97 g/t Au	64	68	Previous					
BBRC0050	6602200		18m @ 2.16 g/t Au	112	130	Previous		5m @ 4.11 g/t Au	118	123	Previous
		including	16m @ 2.4 g/t Au	114	130	Previous	including	3m @ 6.18 g/t Au	118	121	Previous
		including	14m @ 2.7 g/t Au	116	130	Previous	and	2m @ 6.82 g/t Au	127	129	Previous
							including	1m @ 12.6 g/t Au	128	129	Previous
BBRC0051	6602400		4m @ 1.75 g/t Au	47	51	Previous	1	1m @ 4.77 g/t Au	50	51	Previous
		including	3m @ 2.18 g/t Au	48	51	Previous					
BBRC0055	6601800		10m @ 1.82 g/t Au	78	88	New		4m @ 3.57 g/t Au	83	87	Previous
		including	8m @ 2.18 g/t Au	80	88	Previous	including	1m @ 10.88 g/t Au	83	84	Previous
		including	7m @ 2.46 g/t Au	80	87	Previous	Ĭ	-			
BBRC0056	6601800		6m @ 1.16 g/t Au	82	88	Previous		1m @ 3.21 g/t Au	84	85	Previous
	-	including	4m @ 1.52 g/t Au	82	86	Previous	1 1				
		including	2m @ 2.28 g/t Au	84	86	Previous					

 Table 1: Summary of More Significant RC Drill Intersections in Possible Open Pit and Underground

 Scenarios (full results in Appendix 1)

The twenty-hole, 2,450m RC drill program (BBRC0037-0056) tested a 600m strike length of the 4.4km target zone which includes the 400m-long Bombora discovery (Figure 1) and which remains open to the north, south and at depth.

New drill results are captioned in red in Figure 1. A full listing of assay results above a nominal 0.2g/t Au cut-off is provided in Appendix 1. A summary of more significant drilling results is presented in Table 1. Further details of the RC drilling are provided in the Company's ASX Release of 15 August 2016 and Appendix 1 and Annexure 1. A cross-section at 6602000N is provided in Figure 2.

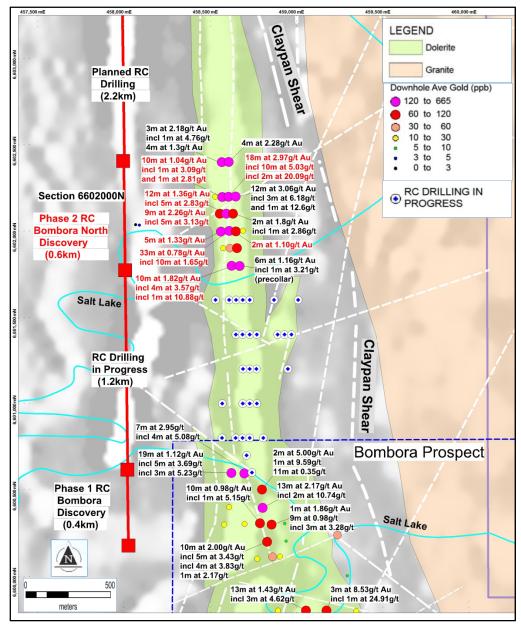


Figure 1: RC Drill Holes Colour-Coded on Average Downhole Gold on Aeromagnetics with Interpreted Geology and Selected RC Drill Intersections. Major Shear Zone and Faults as White Dashed Lines (<u>New Results in Red Caption</u>).

Mineralisation is hosted by fractionated dolerite and is dominated by sulphide-impregnated fault zones (lodes) with up to 5% pyrite and pyrrhotite accompanied by silica, biotite, chlorite and carbonate alteration and minor quartz-pyrite veinlets (eg. Photo 1). Mineralisation is similar in nature to the Bombora discovery to the south and is hosted primarily by iron-rich dolerite, a significant component of which is granophyric in nature.

Diamond drilling, which is ongoing, has identified visible gold (Photo 1) in each of the first two diamond drill holes on 66001800N, the southern-most drill line at Bombora North (ASX Release 30 August 2016). Assays are pending on these holes.

The initial diamond hole, utilising BBRC0056 as a pre-collar, confirmed the presence of lamprophyre (Photo 2). This is a relatively rare, deeply-sourced ultra-potassic intrusive rock that has a documented spatial and possible temporal association with large Archean gold deposits in WA and overseas (Golden Mile, Darlot, Superior Province in Canada). In addition, lamprophyre has also been confirmed in RC chips at the Bombora discovery to the south.

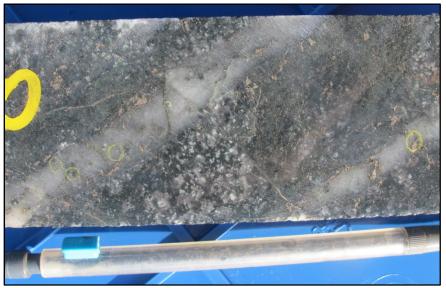


Photo 1: Lake Roe Project - Visible gold (circled) in quartz veins in sulphide lode (BBRD0056; 110.1m)

Photo 2: Lake Roe Project – Lamprophyre dyke (BBRD0056; 118.2m)

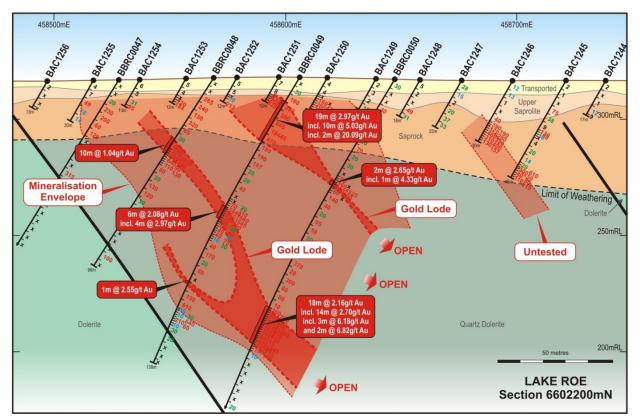


Figure 2: Bombora North Cross Section 6602200N (assay results in ppb Au except where captioned)

Next Steps

RC drilling is in progress with the objective of linking the Bombora North and Bombora discoveries to establish a 2.2km zone of mineralisation in preparation for resource delineation drilling. Once this drilling is completed, RC drilling is planned to test the 2.2km zone *to the north* of the Bombora North discovery. Previous, wide-spaced aircore drilling in this northern area returned drill intersections up to 7.61g/t Au accompanied by strong alteration, and continuous gold pathfinder element geochemistry.

Diamond drilling is currently underway to assess gold mineralisation geometries at Bombora, following the completion of three holes at Bombora North, and one hole which tested the Claypan Shear, situated near the granite contact to the east of Bombora. Results are pending.

The diamond drilling component of the drilling will be 50% funded (up to \$150,000) under the WA Government's Exploration Incentive Scheme 2016/17 Co-Funded Drilling Program grant awarded to the Company in the June 2016 quarter.

Tom Sanders Executive Chairman Breaker Resources NL

13 September 2016

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

About Breaker

Breaker Resources NL is a significant tenement holder in WA's Eastern Goldfields Superterrane in the Yilgarn Craton. The Company's exploration strategy focuses on the use of structural analysis and innovative multi-element geochemical techniques to identify large new gold systems concealed by transported cover. Under-cover areas in WA's high-endowment Eastern Goldfields Superterrane are largely unexplored and represent a new and highly prospective search space that is now amenable to exploration using modern geochemical techniques not available 20 years ago. The Company's research and development project activities augment this strategy.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of The Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1 - RC Drill Results (see Notes below)

Hole No.	Prospect	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (ppb)	Au (q/t)	Sample
BBRC0037	Bombora	78	6601997	458562	316.1	-60.6	271	9	17	8	371	0.37	New
			including					9	12	3	517	0.52	New
BBRC0037								20	21	1	270	0.27	New
BBRC0037								23	28	5	1333	1.33	New
			including					23	27	4	1554	1.55	New
			including					26	27	1	2665	2.67	New
BBRC0037								34	35	1	200	0.20	New
BBRC0038	Bombora	113	6602000	458610	315.9	-60.1	273.2	8	41	33	783	0.78	New
			including					12	18	6	920	0.92	New
			including					12	13	1	1520	1.52	New
			and		-	-		14	15	1	1130	1.13	New
BBRC0038								31	41	10	1615	1.62	Previous
			including					31	39	8	1940	1.94	Previous
			including					31	32	1	2380	2.38	Previous
			and					33	34	1	3780	3.78	Previous
			and					36	37	1	3430	3.43	Previous
DDDDDDDD			and					38 42	39 43	1	2690 210	2.69 0.21	Previous
BBRC0038									43 70	7			Previous
BBRC0038			including					63 63	64	1	305 890	0.31 0.89	New
			including					69	64 70	1	770	0.69	New
PPPC0020			and					74	75	1	320	0.77	New
BBRC0038 BBRC0039	Bombora	186	4401000	450440	316.3	-60.3	269.9	13	15	2	560	0.52	New New
DDKC0039	Bombora	180	6601998 including	458648	310.3	-00.3	209.9	13	14	1	905	0.38	New
BBRC0039			Incloaing					17	18	1	210	0.21	New
BBRC0039 BBRC0039								22	24	2	1100	1.10	New
DDRC0037		l	including					23	24	1	1960	1.96	New
BBRC0039			in relocaling					54	55	1	490	0.49	New
BBRC0039								59	63	4	703	0.70	New
DDROODO			including					59	60	1	820	0.82	New
			and					62	63	1	1850	1.85	New
BBRC0039								66	69	3	540	0.54	New
			including					66	67	1	815	0.82	New
BBRC0039								71	72	1	490	0.49	New
BBRC0039								76	78	2	475	0.48	New
			including					76	77	1	540	0.54	New
BBRC0039								92	97	5	393	0.39	New
			including					92	94	2	413	0.41	New
			and					96	97	1	920	0.92	New
BBRC0039								112	113	1	500	0.50	New
BBRC0039								115	116	1	220	0.22	New
BBRC0040	Bombora	192	6602001	458690	316.4	-60	271.0	30	31	1	280	0.28	New
BBRC0040								110	111	1	650	0.65	New
BBRC0040								146	148	2	1443	1.44	New
			including					147	148	1	2585	2.59	New
BBRC0040								163	165	2	465	0.47	New
		r	including			,		163	164	1	700	0.70	New
BBRC0041	Bombora	132	6601998	458648	316.3	-60.3	269.9	41	44	3	392	0.39	New
 			including					43	44	1	540	0.54	New
BBRC0041								60	61	1	480	0.48	New
BBRC0041								72	73	1	730	0.73	New
BBRC0041								76	77	1	903	0.90	New
BBRC0041			in a h					81	83	2	295	0.30	New
			including					81	82	1	340	0.34	New
BBRC0041		1						88	89	1	687	0.69	New

Hole No.	Prospect	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (ppb)	Au (g/t)	Sample
BBRC0043	Bombora	180	6601900	458655	316.7	-60.5	271.4	15	18	3	333	0.33	New
BBRC0043			inc	luding				16	18	2	370	0.37	New
BBRC0043								46	47	1	200	0.20	New
BBRC0043								61	62	1	1860	1.86	New
BBRC0043								73	74	1	330	0.33	New
BBRC0043								99	100	1	2010	2.01	New
BBRC0043			in oludin o					108	110	2	505	0.51	New
BBRC0043			including					108 124	109 126	1 2	720 1185	0.72 1.19	New New
DDKC0043			including					124	120	 1	1740	1.19	New
BBRC0044	Bombora	72	6602100	458555	316.5	-59.9	275.4	124	125	2	425	0.43	New
DDRC0044	Dombora	12	including	430333	510.5	-39.9	275.4	16	17	1	580	0.58	New
BBRC0044			Inclouing					21	23	2	525	0.53	New
DDRCOOH4			including					21	22	1	800	0.80	New
BBRC0044			Incloaing					27	28	1	220	0.22	New
BBRC0044								36	37	1	1240	1.24	New
BBRC0045	Bombora	108	6602100	458593	317.5	-59.9	271	10	14	4	353	0.35	New
			including					11	13	2	415	0.42	New
			including					12	13	1	520	0.52	New
BBRC0045			9					22	34	12	1355	1.36	New
			including				1	22	29	7	2137	2.14	New
			including					22	27	5	2830	2.83	New
			including					23	26	3	3855	3.86	New
BBRC0045								35	36	1	250	0.25	New
BBRC0045								45	49	4	931	0.93	New
		•	including					47	48	1	1575	1.58	New
BBRC0045								52	56	4	979	0.98	New
			including					52	55	3	1228	1.23	New
			including					52	54	2	1568	1.57	New
			including					52	53	1	2125	2.13	New
BBRC0045								59	68	9	2259	2.26	New
			including					62	68	6	2892	2.89	New
			including					62	67	5	3132	3.13	New
			including					62	64	2	4525	4.53	New
			and					66	67	1	3720	3.72	New
BBRC0046	Bombora	150	6602100	458632	317.0	-59.7	274.6	10	12	2	535	0.54	New
			including					10	11	1	830	0.83	New
BBRC0046								30	31	1	460	0.46	New
BBRC0046								37	38	1	230	0.23	New
BBRC0046								60	62	2	1810	1.81	Previous
			including			-		61	62	1	2860	2.86	Previous
BBRC0046								99	100	1	320	0.32	Previous
BBRC0046								103	105	2	390	0.39	Previous
BBRC0046			in alter "					109	111	2	295	0.30	New
DDDC0047	Domb	150	including		21/ 7	F0.4	727 2	110	111	1	310	0.31	New
BBRC0047	Bombora	150	6602198	458528	316.7	-59.4	272.7	12 14	13	1	230	0.23	New
BBRC0047								14	16 20	2	243 200	0.24	New
BBRC0047 BBRC0048	Bombora	96	6602197	458569	317.7	-58.7	270.4	19 9	12	3	417	0.20	New New
BBRC0048 BBRC0048	BIDUITIDE	90	0002197	400009	317.7	-30.7	270.4	9 15	12	2	385	0.42	New
BBRC0048								21	24	3	300	0.37	New
55100040		I	including			L	1	21	24	1	480	0.30	New
BBRC0048								31	41	10	1038	1.04	New
		I	including				l	34	41	7	1158	1.16	New
			including					34	38	4	1729	1.73	New
			including					34	35	1	3085	3.09	New
			5					37	38	1	2810	2.81	Previous
			and					3/	50			2.01	
BBRC0048			and					40	41	1	640	0.64	New
BBRC0048 BBRC0048			and										

Hole No.	Prospect	Total Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Width (m)	Au (ppb)	Au (g/t)	Sample
BBRC0049	Bombora	138	6602198	458606	317.7	-60	273.2	9	10	1	280	0.28	New
BBRC0049								12	30	18	2968	2.97	New
			including					20	30	10	5034	5.03	New
			including					24	28	4	11484	11.48	New
			including including					24 25	27 27	3	14590 20088	14.59 20.09	New New
BBRC0049			Inclouing					32	33	1	20088	0.28	New
BBRC0049								37	38	1	240	0.24	New
BBRC0049								64	70	6	2078	2.08	Previous
			including					64	69	5	2447	2.45	Previous
			including					64	68	4	2974	2.97	Previous
			including					64	65	1	5840	5.84	Previous
BBRC0049			and			r –		67 85	68 86	1	3945 290	3.95 0.29	Previous New
BBRC0049								101	102	1	2557	2.56	New
BBRC0049								107	112	5	511	0.51	New
			including					107	110	3	662	0.66	New
			including					107	108	1	900	0.90	New
	1		and					109	110	1	1070	1.07	New
BBRC0049								111	112	1	350	0.35	New
BBRC0049			including					116 116	118 117	2	425 640	0.43	Previous Previous
BBRC0050	Bombora	168	6602199	458647	316.9	-59.4	274.1	51	53	2	2653	2.65	Previous
			including					51	52	1	4325	4.33	Previous
BBRC0050								88	89	1	240	0.24	New
BBRC0050								112	130	18	2156	2.16	Previous
			including					114	130	16	2397	2.40	Previous
			including					116	130	14	2696	2.70	Previous
			including					118	123	5	4110	4.11	Previous
			including and					118 127	121 129	3	6183 6818	6.18 6.82	Previous Previous
			including					127	127	1	12595	12.60	Previous
BBRC0051	Bombora	120	6602399	458567	316.0	-60.4	273	13	21	8	308	0.31	New
			including					13	15	2	485	0.49	New
			including					13	14	1	550	0.55	New
	r		and					20	21	1	505	0.51	New
BBRC0051			to all calles a					47	51	4	1747	1.75	Previous
			including including					48 48	51 49	3	2182 1400	2.18 1.40	Previous Previous
			and					50	51	1	4767	4.77	Previous
BBRC0052	Bombora	108	6602400	458607	315.8	-59.4	271.6	45	52	7	417	0.42	New
			including					46	51	5	488	0.49	New
			including					46	48	2	550	0.55	New
			and					50	51	1	870	0.87	New
BBRC0052 BBRC0055	Bombora	132	6601799	458624	316.2	-59.9	272.1	86 6	87 7	1	248 220	0.25	New New
BBRC0055	BOILDOLA	132	0001799	430024	310.2	-37.7	272.1	22	23	1	200	0.22	New
BBRC0055								48	49	1	380	0.38	New
BBRC0055								54	57	3	693	0.69	New
			including					54	55	1	958	0.96	New
BBRC0055								62	63	1	840	0.84	New
BBRC0055			including			I		78	88	10 °	1816	1.82	New
			including including					80 80	88 87	8 7	2184 2459	2.18 2.46	Previous Previous
			including					83	87	4	3570	3.57	Previous
			including					83	84	1	10880	10.88	Previous
BBRC0056	Bombora	180	6601797	458670	315.7	-60	272.1	13	14	1	230	0.23	New
BBRC0056								46	48	2	803	0.80	New
			including					47	48	1	1315	1.32	New
BBRC0056						┞───		57	58	1	200	0.20	New
BBRC0056								60	61 72	1	225 1300	0.23	New New
BBRC0056	1	I	including		<u> </u>	I		69 70	72	3	1300 1800	1.30 1.80	New
			including					70	72	1	2180	2.18	New
BBRC0056			9					75	76	1	820	0.82	New
BBRC0056								82	88	6	1162	1.16	Previous
DDICOUCCU			including					82	86	4	1515	1.52	Previous
DDICOGGG													
DERCOUSE			including					84	86	2	2275	2.28	Previous
BBRC0056			including including			1		84 84 105	86 85 106	2 1 1	2275 3210 1090	2.28 3.21 1.09	Previous Previous New

Appendix 1 Notes

- Mineralised widths shown are downhole distances. The estimated true width is interpreted to be approximately 90% of the downhole interval but this is provisional and subject to change given the preliminary nature of the drilling. The main primary mineralised structural orientation(s) has yet to be confirmed by diamond drilling and is inconclusive. Secondary mineralisation geometries may be present.
- Lower cut-off grade of 0.2g/t (200ppb Au) applied due to the greenfields nature of the drilling (details provided in Annexure 1).

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	20 reverse circulation (RC) holes were completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer mounted cyclone by a green plastic bag in 1m intervals and the dry sample was riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Drill hole collars were picked up using handheld GPS and corrected/checked for elevation using elevation data from a detailed aeromagnetic survey.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	n/a
techniques and sample preparation	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with field sample duplicates.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Sample duplicates were taken three times in every 100 samples. All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	<i>The verification of significant intersections by either independent or alternative company personnel.</i>	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	None undertaken in this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff and assay results are merged with the primary data using established database protocols.
	Discuss any adjustment to assay data.	No adjustments were undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars were located by handheld GPS. Elevation values are in AHD and were corrected using a digital elevation model from a 100m line spaced aeromagnetic survey. Expected accuracy is +/- 4m for easting, northing and +/- 2 elevation data.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	Hole pickups were undertaken using a handheld GPS (see comments above). This is considered acceptable for these regional style exploration activities.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC holes were spaced a nominal 40m apart on a drill line spacing of either 100m or 200m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill density is not adequate at this stage to define grade continuity and geological continuity to support classification as a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling (-60° towards 270°/grid west) has confirmed the interpreted east dipping stratigraphy (based from field mapping) minimising lithological bias. At this stage the main primary mineralised structural orientation(s) has yet to be confirmed by diamond drilling and is still inconclusive.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have	No conclusive orientation-based sampling bias has been identified in the data to this point.

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	
Sample security	<i>The measures taken to ensure sample security.</i>	RC samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits/reviews have been conducted on sampling technique to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC drill holes were located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults

Criteria	JORC Code explanation	Commentary
		of the Claypan Shear Zone and occurs preferentially on the sheared and altered internal and outer contacts of a wide fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results	Refer to Appendix 1 for significant results from the RC drilling.
	including a tabulation of the following information for all Material drill holes:	Drill hole locations are described in the body of the text and on related Figures.
	 easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	The use of low level geochemical information to identify anomalous trends and "footprints" rather than reporting of individual values is considered appropriate in some cases to map and locate geological and geochemical anomalous trends that potentially identify target areas for follow up drilling.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A nominal 0.2g/t Au lower cut-off is reported as being material in the context of the grassroots geological setting.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported RC assays have been length weighted. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Arithmetic length weighting used.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with	At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
intercept lengths	respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a	The angled orientation of RC drilling may introduce some sampling bias (increasing the intercept width of flat lying or vertical mineralisation).
	clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above a 0.2g/t lower cut-off are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	