

ASX ANNOUNCEMENT

More thick high-grade hits results of up to 21g/t further strengthen open pit potential at Lake Roe

Second diamond drill rig to start next week to progress testing of depth potential

Highlights

★ Infill RC drilling in the central north part of 2.2km-long Bombora discovery has returned more wide, high-grade intersections that continue to upgrade the mining potential. Results include:

Hole No.	Interval @ g/t gold	From (m)	Includes Interval @ g/t gold
BBRC0452	20m @ 3.29	140	16m @ 4.06
	4m @ 2.18	168	-
	8m@1.74	180	-
BBRC0456	20m @ 1.81	24	4m @ 3.88
	12m @ 7.15	140	4m @ 20.95
BBRC0461	8m @ 5.77	136	3m @ 15.01
	8m @ 2.33	148	4m @ 4.25
BBRC0395	12m @ 2.42	52	6m @ 4.5
BBRC0446	19m @ 1.13	145	3m @ 4.28
BBRC0449	29m @ 1.39	17	7m @ 2.78
	4m @ 2.72	32	-
BBRC0450	10m @ 3.36	37	5m @ 6.31
	16m @ 2.23	100	8m @ 3.97
BBRC0453	4m @ 6.87	128	-
	20m @ 1.79	168	8m @ 3.18
BBRC0459	3m @ 4.87	201	1m @ 12.21
	12m @ 0.91	208	-
BBRC0463	15m @ 2.54	156	6m @ 3.69
BBRC0466	11m @ 2.26	32	4m @ 5.3
BBRC0467	12m @ 1.92	12	4m @ 3.62
BBRC0468	8m @ 6.61	48	4m @ 12.95
BBRC0470	6m @ 7.12	165	4m @ 10.43
BBRC0471	8m @ 4.03	24	6m @ 4.85
BBRC0502	3m @ 8.79	165	-
BBDD0023	5.1m @ 4.23	46.9	3.2m @ 6.14

- Maiden JORC Resource planned for late 2017. Resource drilling continuing with two RC drill rigs and one diamond drill rig. A second diamond drill rig is scheduled to start next week to advance testing of the underground mining potential
- RC drilling also underway at the Bombora South, South Hinge, Claypan South and North Hinge Prospects situated outside the main Bombora discovery zone

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Breaker Resources NL (ASX: BRB) is pleased to announce more outstanding high-grade drilling results from ongoing infill reverse circulation (**RC**) and diamond drilling at its Bombora gold discovery in Western Australia, where it continues to step-up drilling activities.

The Bombora discovery forms part of an 8km-long greenfields gold system identified at the 100%owned Lake Roe Project, 100km east of Kalgoorlie, WA.

The latest results continue to extend and upgrade the gold mineralisation at Bombora while also providing more evidence of its continuity and mining potential. The results will feed into a maiden Resource estimate planned for release in the late 2017. The new results relate to 56 RC drill holes (9,570m) and seven diamond drill holes (1,308m) focused mainly in the northern and central parts of the 2.2km Bombora discovery zone (Figures 1 and 2).

The drilling also includes seven reconnaissance RC drill holes and one diamond drill hole outside the main Bombora discovery zone at the Bombora South and Crescent Prospects respectively (Figure 3).

Figure 1: Bombora discovery RC and diamond drill (DD) hole plan: Selected RC and diamond drill hole intersections; Drill holes colour-coded by average downhole gold over aeromagnetic image with interpreted geology

Breaker's Executive Chairman, Mr Tom Sanders, said the Company was highly encouraged by the latest results, which further reinforced the quality and consistency of the mineralisation at Bombora and its potential amenability to open pit mining.

"The progressive increase in the density of RC and diamond drilling continues to upgrade the definition and continuity of the sulphide lode and stockwork mineralisation. Where we have close-spaced (Resource) drilling we see continuity and compelling mining potential," Mr Sanders said.

"The gold occurs in both steep and flat lodes/stockwork zones (faults) particularly where they intersect. The exciting thing is that these lodes occur over 2.2km, can be high-grade and are open at depth and along strike where high-grade reconnaissance intersections are already present.

"In response to the strong results, we will start up a second diamond drill rig next week to add to the two RC rigs and one diamond drill rig we have going as we head towards our initial JORC Resource planned for late 2017.

"Campaign RC drilling is also underway at the Bombora South, South Hinge, Claypan South and North Hinge Prospects to the south and north of the main Bombora discovery. Exploration success in any of these areas will lead to more resource drilling."

RC & Diamond Drill Program

The RC component of the drilling is progressively reducing the drill hole spacing to 40m x 20m (from 100m x 20m or wider) to facilitate Resource estimation.

The main aim of the diamond drilling is structural orientation and validation but some diamond drill holes are selectively extended to provide a preliminary indication of the depth potential below the expected limit of open pit mining.

New drill holes are shown in plan and long section on Figures 1 to 3 (BBRC0392-0400; 0446-073; 0501-0513; 0601-0607 and diamond holes BBDD0022-0026, BBRD0322 and 0327). A listing of assay results above a nominal 0.5g/t Au (calculated using a 0.2g/t lower cut-off grade) is provided in Appendix 1. Many of the RC results are based on preliminary (4m) composite samples. Several are based on partial coverage 1m riffle split results. More significant RC and diamond drill intersections are highlighted in plan and long section on Figures 1 to 3.

Further details of the RC and diamond drilling are provided below and in Annexure 1. The downhole intersections reported do not represent true width as the geometry of the mineralised structures is still being resolved in several areas. Similarly, drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.

Results/Analysis

The drilling in the main Bombora discovery zone returned a large number of wide, high-grade intersections that continue to upgrade the mining potential. More significant RC and diamond drill intersections include:

Hole No.	Interval @ g/t gold	From (m)	Includes Interval @ g/t gold	From (m)	
BBRC0393	4m @ 3.15	53	3m @ 3.96	53	
BBRC0393	4m@3.14	88	1m@11.36	90	
BBRC0395	12m @ 2.42	52	6m @ 4.5	56	
BBRC0396	12m @ 1.15	48	8m @ 1.51	52	
BBRC0396	4m @ 2.45	136	-		
BBRC0446	19m @ 1.13	145	3m @ 4.28	147	
BBRC0447	11m@0.93	105	-		
BBRC0449	29m @ 1.39	17	7m @ 2.78	20	
	-		& 4m @ 2.72	32	
BBRC0450	10m @ 3.36	37	5m @ 6.31	41	
BBRC0450	7m @ 1.32	65	1m @ 6.52	65	
BBRC0450	16m @ 2.23	100	8m @ 3.97	108	
BBRC0452	20m @ 3.29	140	16m @ 4.06	140	
BBRC0452	4m @ 2.18	168	-		
BBRC0452	8m@1.74	180	-		
BBRC0453	4m @ 6.87	128	-		
BBRC0453	12m @ 0.67	152	-		
BBRC0453	20m @ 1.79	168	8m @ 3.18	180	
BBRC0456	20m @ 1.81	24	4m @ 3.88	40	
BBRC0456	16m @ 0.65	88	4m @ 1.52	88	
BBRC0456	12m @ 7.15	140	4m @ 20.95	144	
	-		2m @ 39.34	146	
BBRC0459	3m @ 4.87	201	2m @ 6.97	202	
	-		1m @ 12.21	202	
BBRC0459	12m @ 0.91	208	-		
BBRC0460	16m @ 0.86	132	-		
BBRC0461	8m@ 5.77	136	3m @ 15.01	141	
BBRC0461	8m @ 2.33	148	4m @ 4.25	152	
BBRC0463	15m @ 2.54	156	6m @ 3.69	157	
	_		3m @ 4.94	159	
	_		1m @ 8.58	167	
BBRC0464	8m@1.67	88	4m @ 3.08	92	
BBRC0466	11m @ 2.26	32	4m @ 5.3	37	
	-		1m @ 13.85	40	
BBRC0467	12m @ 1.92	12	8m @ 2.78	12	
	-		4m @ 3.62	12	
BBRC0468	8m @ 6.61	48	4m @ 12.95	52	
BBRC0470	5m @ 2.56	135	2m @ 5.25	135	
	-		1m @ 9.17	136	
BBRC0470	6m @ 7.12	165	4m @ 10.43	165	
BBRC0471	8m @ 4.03	24	6m @ 4.85	25	
BBRC0502	3m @ 8.79	165	-	-	
BBRC0503	3m @ 4.08	73	2m @ 5.88	74	
	-		1m @ 9.97	74	
BBRC0508	12m@1.19	64	8m @ 1.33	64	
BBDD0023	5.1m @ 4.23	46.9	3.2m @ 6.14	46.9	
BBDD0023	9m @ 1.56	29	4.6m @ 2.35	29	
22220024	-		1.6m @ 3.65	32	
BBDD0025	6.2m @ 1.98	29.8	1.04m @ 3.66	32.3	

The progressive increase in the density of the RC and diamond drilling continues to upgrade the definition and continuity of the sulphide lode and stockwork mineralisation. The gold occurs in steep and flat lodes/stockwork zones (faults) particularly where they intersect. The stacked nature of the lodes, their overall dimensionality, and their continuity upgrade the open pit and underground mining potential.

Outside the main Bombora discovery zone, limited reconnaissance drilling at Bombora South (BBRC0601-0607) encountered anomalous gold mineralisation of up to 3.85g/t Au that requires further investigation. A single diamond drill hole at the Crescent Prospect (BBDD0022) encountered gold up to 1.0g/t, which also also requires further investigation.

Figure 3: Lake Roe Gold System showing RC and diamond drill holes over aeromagnetic image with interpreted geology: Drill holes colour-coded by downhole average gold

Next Steps

A maiden JORC Resource is planned for late 2017. Resource drilling is now focused on the southern part of the Bombora discovery to reduce the drill hole spacing over multiple new lodes and stockwork zones discovered in the area last month (ASX Release 7 August 2017).

In light of the continued strong results, a second diamond drill rig is expected to start next week to augment the two RC drill rigs and one diamond drill rig currently operating within the main 2.2km long Bombora discovery zone.

The second diamond drill rig will progress testing of the underground mining potential highlighted by recent diamond drilling results (ASX Release 7 August 2017), in addition to ongoing structural and validation drilling. Deep reconnaissance diamond drilling on 200m-spaced sections is planned along the 2.2km Bombora discovery zone.

Preliminary metallurgical testwork results are expected by the end of September 2017.

Campaign RC drilling is currently in progress at the Bombora South, South Hinge, Claypan South and North Hinge Prospects to the south and north of the main Bombora discovery where numerous high-grade RC drill intercepts are "floating in space"due to the wide-spaced nature of earlier reconnaissance drilling (Figure 3). Preliminary assay results for the balance of this program are expected by the end of September 2017. Exploration success in any of these areas is likely to lead to additional Resource drilling.

Background

The 2.2km Bombora discovery is open along strike and depth and forms part of an 8km-long gold system that is itself open along strike.

The Bombora discovery is hidden below thin transported cover (typically 5-10m). Gold typically occurs as sulphide-rich lode and stockwork mineralisation in an upper, iron-rich part of a fractionated dolerite, the Bombora Dolerite. The sulphide lodes have three dominant orientations and represent sulphide-impregnated fault zones (fluid pathways) with up to 10% pyrrhotite and pyrite accompanied by silica, albite, biotite and carbonate alteration and (tensional) quartz-pyrite veinlets that can form stockwork-style mineralisation commonly associated with the sulphide lodes.

Tom Sanders Executive Chairman Breaker Resources NL

4 September 2017

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1

Hole No.	Prospect	Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Length (m)	Au (g/t)	Sample
BBRC0392	Bombora	210	6601722	458719	312.2	-60.6	274.1	68	72	4	0.99	Composite
								80	84	4	0.50	Composite
								163	168	5	1.74	Split
				uding				163	165	2	3.49	Split
		-		Ind			-	167	168	1	1.24	Split
BBRC0393	Bombora	204	6601699	458700	312.0	-64.4	271.2	44	48	4	0.42	Composite
								53	57	4	3.15	Split
			incl	uding				53	56	3	3.96	Split
								88	92	4	3.14	Composite
			incl	uding				90	91	1	11.36	Split
								152	156	4	0.78	Composite
BBRC0394	Bombora	234	6601700	458749	311.8	-60.9	270.5	176	184	8	0.67	Composite
BBRC0395	Bombora	144	6601680	458658	312.0	-60.5	272.0	34	44	10	0.60	Composite/Split
			incl	uding				34	35	1	2.88	Split
								52	64	12	2.42	Composite
			incl	uding				56	62	6	4.50	Split
								76	84	8	0.31	Composite
								92	104	12	0.53	Composite/Split
			incl	uding				92	93	1	1.04	Split
			С	Ind				94	95	1	1.78	Split
								108	112	4	0.49	Composite
BBRC0396	Bombora	174	6601680	458699	311.9	-59.7	270.7	48	60	12	1.15	Composite
			incl	uding				52	60	8	1.51	Composite
								108	112	4	0.23	Composite
								136	140	4	2.45	Composite
BBRC0397	Bombora	198	6601680	458718	311.9	-60.2	270.3	48	52	4	0.53	Composite
								68	72	4	0.27	Composite
BBRC0398	Bombora	170	6601640	458700	311.7	-60.8	270.4	16	20	4	0.24	Composite
								28	32	4	0.73	Composite
								98	100	2	1.90	Split
				uding				99	100	1	3.06	Split
BBRC0399	Bombora	186	6601640	458720	311.7	-60.2	270.0	20	26	6	0.27	Composite/Split
								132	136	4	0.40	Composite
								165	166	1	0.74	Split
BBRC0400	Bombora	170	6601600	458710	311.7	-60.1	270.5	12	16	4	0.77	Composite
								64	67	3	0.41	Split
								147	149	2	0.37	Split
BBRC0446	Bombora	234	6601900	458732	314.4	-59.7	270.0	132	136	4	0.28	Composite
								145	164	19	1.13	Composite/Split
			incl	uding			1	147	150	3	4.28	Split
								159	160	1	1.02	Split
								172	184	12	0.47	Composite
								204	208	4	0.43	Composite
BBRC0447	Bombora	222	6601998	458711	314.7	-59.8	271.4	105	116	11	0.93	Composite/Split
			incl	uding				105	106	1	1.23	Split
								110	112	2	3.63	Split
								180	184	4	0.85	Composite
								188	196	8	0.38	Composite
								200	204	4	0.38	Composite
BBRC0449	Bombora	96	6601761	458607	313.6	-59.5	270.8	17	46	29	1.39	Composite/Split
				uding				20	27	7	2.78	Split
				Ind				32	36	4	2.72	Composite
			С	Ind		-		44	45	1	3.95	Split
							l	56	60	4	0.43	Composite

Hole No.	Prospect	Depth	North	East	RL	Dip	Azim	From (m)	To (m)	Length (m)	Au (g/t)	Sample
BBRC0450	Bombora	174	6601762	458678	314.1	-59.5	269.8	37	47	10	3.36	Split
221100100				uding				41	46	5	6.31	Split
								65	72	7	1.32	Split
			incl	uding				65	66	1	6.52	Split
								100	116	16	2.23	Composite
			incl	uding				108	116	8	3.97	Composite
								120	125	5	1.52	Composite/Split
			incl	uding				124	125	1	5.13	Split
BBRC0451	Bombora	204	6601762	458717	314.5	-60.1	271.0	80	84	4	0.34	Composite
								108	112	4	1.80	Composite
								120	124	4	0.67	Composite
								128	132	4	0.90	Composite
								164	168	4	0.44	Composite
								172	180	8	0.81	Composite
				uding				176	180	4	1.29	Composite
BBRC0452	Bombora	220	6601762	458736	313.6	-59.4	272.2	96	100	4	0.48	Composite
								108	112	4	0.91	Composite
								140	160	20	3.29	Composite
		r	incl	uding	1	1		140	156	16	4.06	Composite
								168	172	4	2.18	Composite
				150700	015 I		070.0	180	188	8	1.74	Composite
BBRC0453	Bombora	210	6601798	458728	315.4	-59.7	270.8	68	72	4	0.32	Composite
								128	132	4	6.87	Composite
								152	164	12	0.67	Composite
			inal	udina				168	188	20	1.79	Composite
BBRC0455	D a va a la la va va	00	r	uding	214.0	(0.0	071.0	180	188	8	3.18	Composite
BBRC0455	Bombora	83	6601840	458590	314.9	-60.2	271.9	40	44	4 20	0.44	Composite
DDKCU430	Bombora	156	6601840	458660 uding	314.1	-63.1	271.7	24	44	20 4	1.81 3.88	Composite
		r	IICI	uaing				40	44 56	4		Composite
								52 88		4	0.28 0.65	Composite
			l incl	uding				<u> </u>	92	4	1.52	Composite Composite
BBRC0457	Bombora	192	6601840	458700	314.3	-61.3	269.4	64	68	4	1.42	Composite
DDICC0437	BOTTIDOIQ	172	0001040	430700	514.5	-01.5	207.4	96	108	12	0.49	Composite
								128	136	8	0.58	Composite
								140	152	12	7.15	Composite
			incl	uding				144	148	4	20.95	Split
				uding				146	148	2	39.34	Composite
				0				172	180	8	0.47	Composite
BBRC0458	Bombora	24	6601840	458759	314.8	-60.0	269.7	., 2		0	01.17	Abandoned
	Bombora							137	142	5	1.76	Split
				uding				137	140	3	2.52	Split
			incl	uding				139	140	1	3.84	Split
								152	156	4	0.54	Composite
								179	184	5	0.45	Split
								188	196	8	0.37	Composite
								201	204	3	4.87	Split
			incl	uding				202	204	2	6.97	Split
			incl	uding				202	203	1	12.21	Split
								208	220	12	0.91	Composite/Split
				uding				214	216	2	2.62	Split
			incl	uding	1			214	215	1	3.68	Split
								236	240	4	0.84	Composite
BBRC0460	Bombora	168	6601880	458685	314.3	-59.9	270.5	44	48	4	1.61	Composite
								80	84	4	0.44	Composite
								88	92	4	0.40	Composite
								96	108	12	0.32	Composite
								112	116	4	0.35	Composite
			L					132	148	16	0.86	Composite
			Incl	uding				144	148	4	1.85	Composite

Hole No.	Prospect	Depth	North	East	RL	Dip	Azim	From	To	Length	Au (g/t)	Sample
BBRC0461	Bombora	198	6601880	458700	314.3	-59.8	272.1	(m) 124	(m) 128	(m) 4	0.36	Composite
DDICOUTOT	Dombold	170	0001000	430700	514.5	-57.0	2/2.1	136	144	8	5.77	Composite
			incl	uding			1	141	144	3	15.01	Split
				o ann g				148	156	8	2.33	Composite
			incl	uding				152	156	4	4.25	Composite
				0				176	180	4	0.58	Composite
BBRC0462	Bombora	252	6601880	458740	314.4	-59.8	271.4	100	104	4	0.67	Composite
					••••			140	160	20	0.43	Composite
								176	180	4	0.34	Composite
BBRC0463	Bombora	228	6601900	458713	314.3	-59.5	268.5	120	136	16	0.44	Composite
								156	171	15	2.54	Split
			incl	uding				157	163	6	3.69	Split
			incl	uding				159	162	3	4.94	Split
			C	and				167	171	4	3.71	Split
			incl	uding				167	168	1	8.58	Split
BBRC0464	Bombora	186	6601900	458673	314.6	-64.4	272.9	44	48	4	0.28	Composite
								88	96	8	1.67	Composite
			incl	uding				92	96	4	3.08	Composite
								123	124	1	0.45	Split
BBRC0466	Bombora	72	6601920	458590	314.8	-59.6	271.0	32	43	11	2.26	Composite/Split
			incl	uding				37	41	4	5.30	Split
			incl	uding				40	41	1	13.85	Split
BBRC0467	Bombora	114	6601920	458610	315.2	-59.8	269.1	12	24	12	1.92	Composite
			incl	uding				12	20	8	2.78	Composite
			C	and				12	16	4	3.62	Composite
								96	99	3	0.90	Split
BBRC0468	Bombora	180	6601920	458660	315.0	-59.4	269.4	48	56	8	6.61	Composite
		1	incl	uding				52	56	4	12.95	Composite
								64	69	5	1.32	Split
				uding				64	65	1	4.02	Split
		-	C	and			1	68	69	1	1.25	Split
								80	84	4	1.01	Composite
BBRC0469	Bombora	198	6601920	458680	314.8	-60.3	271.6	164	168	4	1.88	olit (Comps Pending
				uding				165	168	3	2.44	olit (Comps Pending
			Inci	uding			1	167	168	1	5.31	olit (Comps Pending
00000470		000	((01000	150700	0145	50.0	071.0	177	178		1.15	olit (Comps Pending
BBRC0470	Bombora	238	6601920	458720 uding	314.5	-59.9	271.2	135	140	5	2.56 5.25	olit (Comps Pending
				uding				135 136	137 137	2 1	9.17	olit (Comps Pending
				ouing				165	171	6	7.12	olit (Comps Pending olit (Comps Pending
			incl	uding			<u> </u>	165	169	4		blit (Comps Pending
BBRC0471	Bombora	90	6601960	458580	314.7	-60.3	272.4	24	32	8	4.03	olit (Comps Pending
bbitto0471	bornbold	70		uding	514.7	00.0	2/2.4	25	31	6	4.85	plit (Comps Pending
BBRC0472	Bombora	144	6601960	458620	314.9	-60.0	272.4	96	97	1	1.35	plit (Comps Pending
BBRC0473	Bombora	180	6601960	458660	315.1	-59.5	271.3	51	52	1	1.76	plit (Comps Pending
22.1001.10	Dornbord	100	0001700	100000	01011	07.0	27 1.0	102	104	2	0.59	plit (Comps Pending
BBRC0502	Bombora	252	6601600	458787	311.7	-59.8	270.1	165	168	3	8.79	Split
						27.0		176	180	4	0.35	Composite
							1	200	203	3	0.75	Split
			incl	uding			•	200	202	2	1.02	Split
BBRC0503	Bombora	120	6601480	458680	311.7	-61.2	270.3	73	76	3	4.08	Split
				uding				74	76	2	5.88	Split
			incl	uding				74	75	1	9.97	Split
BBRC0504	Bombora	222	6601480	458720	311.7	-61.1	269.7	32	36	4	0.33	Composite
BBRC0505	Bombora		6601480	458740	311.7	-60.7	271.1					Abandoned
BBRC0506	Bombora	240	6601480	458780	311.7	-60.0	269.1	216	220	4	0.54	Composite
BBRC0508	Bombora	102	6601440	458710	311.7	-61.0	270.7	64	76	12	1.19	Composite
			incl	uding				64	72	8	1.33	Composite
		l I					1	84	88	4	0.85	Composite

Hole No.	Prospect	Depth	North	East	RL	Dip	Azim	From	To	Length	Au (g/t)	Sample
BBRC0509	Bomborg	12	6601440	458740	311.8	-60.0	270.3	(m)	(m)	(m)		Abandoned
BBRC0511	Bombora	198	6601440	458780	311.8	-60.8	270.3	140	144	4	0.50	Composite
BBRC0512	Bombora	216	6601440	458800	311.9	-59.1	269.8	180	184	4	0.37	Composite
BBRC0513	Bombora	264	6601440	458820	312.7	-61.3	269.3	216	224	8	0.73	Composite
	001110010	201		uding	0120	0110	20710	220	224	4	1.07	Composite
				Ŭ				232	244	12	0.51	Composite
BBRC0602	ombora Sout	180	6599699	458972	313.0	-60.2	89.4	24	40	16	0.57	Composite
								52	56	4	0.52	Composite
BBRC0605	ombora Sout	252	6599900	458685	315.1	-60.0	88.3	44	48	4	0.20	Composite
								148	150	2	2.58	Split
		•	incl	uding				149	150	1	3.85	Split
BBRC0606	ombora Sout	204	6599900	458725	313.8	-60.0	92.8	20	24	4	1.57	Composite
								108	112	4	0.47	Composite
								116	120	4	0.95	Composite
BBDD0022	Crescent	114.4	6604598	458564	313.4	-60.4	269.2	90.8	91.9	1.1	0.99	Half Core
BBDD0023	Bombora	141.6	6601080	458710	311.7	-58.0	270.7	23	30.54	7.54	0.35	Half Core
			incl	uding				28	29	1	1.23	Half Core
								46.9	52	5.1	4.23	Half Core
			incl	uding				46.9	50.1	3.2	6.14	Half Core
								57.1	60	2.9	0.72	Half Core
BBDD0024	Bombora	61.83	6601560	458610	311.7	-60.0	268.1	24	25	1	0.40	Half Core
								29	38	9	1.56	Half Core
			incl	uding				29	33.6	4.6	2.35	Half Core
			incl	uding				32	33.6	1.6	3.65	Half Core
			С	Ind				37	38	1	1.13	Half Core
								48	50	2	0.44	Half Core
								51.8	53	1.2	0.35	Half Core
BBDD0025	Bombora	61.9	6601560	458612	311.7	-60.1	270.9	29.8	36	6.2	1.98	Half Core
			incl	uding				32.31	33.35	1.04	3.66	Half Core
			С	ind				35	36	1	1.43	Half Core
								38.55	53	14.45	0.44	Half Core
				uding				41	42	1	1.20	Half Core
				Ind	-			52	53	1	1.60	Half Core
BBDD0026	Bombora	96.55	6601560	458630	311.7	-61.1	270.3	22	28	6	0.83	Half Core
			incl	uding			1	22	23	1	2.15	Half Core
								35	38	3	0.74	Half Core
			incl	uding				36.6	37.6	1	1.28	Half Core
								55	56	1	2.10	Half Core
					<u> </u>			66	67	1	0.48	Half Core
BBRD0322								239.65		1.45	0.43	Half Core
BBRD0327	Bombora	303.5	6601260	458660	311.8	-59.0	89.2	291	291.5	0.5	1.03	Half Core

Appendix 1 Notes

- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases due to the early stage nature of the drilling. Several mineralisation geometries have been confirmed by diamond drilling.
- One metre results are pending for all composite samples. Composite samples are pending for some drill holes as tabled.
- Nominal lower cut-off grade of 0.2g/t Au applied due to the early (pre-resource) nature of the drilling. Grades reported are above a nominal 0.5g/t Au. No top assay cut has been used.
- ▼ Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 56 reverse circulation (RC) holes and seven diamond drill hole were completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. RC samples were composited at 4m to
	mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	 produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.

Criteria	JORC Code explanation	Commentary
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling techniques and sample preparation	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.vf
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	sampling.	All samples submitted were selected to weigh less than 3kg to ensure total

Criteria	JORC Code explanation	Commentary
		preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
16313	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	None undertaken in this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor . GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data. All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC holes were spaced on a variable nominal 40m x 20m, 40m x 40m or wider reconnaissance drill patterns. Diamond drill holes are drilled selectively,
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	mainly to clarify structure. The drill density is not yet sufficient to adequately clarify the detailed geometry and support classification as a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp. No sample compositing has been
		applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	<i>The measures taken to ensure sample security.</i>	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory via Ausdrill (internal freight) or BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.

Criteria	JORC Code explanation	Commentary
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement E28/2515, which is held 100% by BRB.
		There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal

Criteria	JORC Code explanation	Commentary
		geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Appendix 1 for significant results from the RC and diamond drilling.
		Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
	 easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	A nominal 0.2g/t Au lower cut-off is used for grade calculations with reporting of any grades above a nominal 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A nominal 0.2g/t Au lower cut-off is used for grade calculations with reporting of any grades above a nominal 0.5g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.