

ASX ANNOUNCEMENT

High-grade lithium discovery at Lake Roe

Breaker investigating strategies to monetise the discovery to benefit its core 1.1Moz[#] Bombora gold deposit

Highlights

- Five wide-spaced RC drill holes have all intersected significant widths of high-grade Li₂O mineralisation below a 700m-long outcrop of lithium-bearing pegmatite, located 15km SSW of the 1.1Moz[#] Bombora gold deposit
- The results include:
 - 17m @ 1.80% Li₂O from 36m in BMRC0009
 - o 14m @ 1.03% Li₂O from 92m in BMRC0001
 - 9m @ 1.60% Li₂O from 97m in BMRC0002
- × Mineralisation is dominated by spodumene and weathering is negligible from surface
- Mineralisation occurs in a 150m- to 200m-wide zone of multiple dykes up to 15m wide that project to surface over a distance of at least 700m, a configuration potentially amenable to open pit mining
- Mineralisation is open in all directions; Mapping, rock chip sampling and step-out drilling have expanded the known footprint of the lithium-bearing pegmatites to a 3.4km x 1km area with indications that it may be more extensive
- × There appears to be significant scope to establish a JORC Resource with further drilling
- Steps are underway to determine the size and potential of the discovery to guide the strategy for monetising it in a way that delivers the greatest benefit to the Company's primary focus on gold
- Auger geochemistry survey in progress over a 90km² area to assess the size potential; Limited diamond drilling is planned to assess the mineralogy and metallurgy

Breaker Resources (ASX: BRB) is pleased to announce that it has made a high-grade lithium discovery at its Lake Roe Gold Project, 100km east of Kalgoorlie in WA, following a 1,503m program of reconnaissance reverse circulation (**RC**) drilling.

The Manna Lithium Prospect is located 15km south-southwest of Breaker's 1.1Moz[#] Bombora Gold Deposit, within tenement E28/2522 (Figure 1). Outcropping lithium-bearing pegmatite was discovered in the area by prospector Steve Argus while undertaking reconnaissance gold-focused exploration for Breaker early in 2018.

First-pass rock-chip sampling identified widespread enrichment in lithium (up to 3.81% Li₂O), tantalum (up to 366ppm Ta₂O₅) and niobium (up to 251ppm Nb₂O₅), and strong evidence of chemical zoning (ASX Release 30 April 2018). Subsequent geological mapping confirmed the presence of a spodumene-rich, lithium-cesium-tantalum (**LCT**) pegmatite system over a 750m x 130m area, with individual pegmatite dykes up to 18m-wide (ASX Release 31 July 2018).

More recent mapping and sampling (summarised in this release) have since expanded the known footprint of the lithium-bearing pegmatite to a 3.4km x 1.0km area. This area is constrained by outcrop limits and the extent of sampling, with indications that it is more extensive.

The drill holes reported in this release are the first drill holes of any kind to test the 3.4 x 1.0km lithiumbearing pegmatite zone at the Manna discovery (Figures 2 and 3).

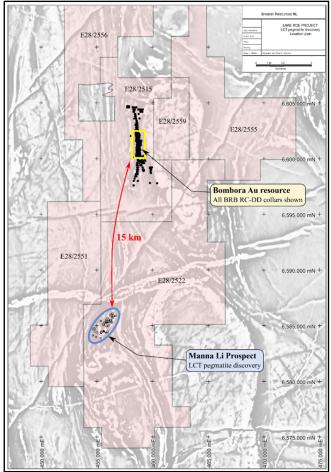


Figure 1: Location plan of the Manna Lithium Prospect, in relation to the Bombora Gold Deposit (greyscale aeromagnetic image background)

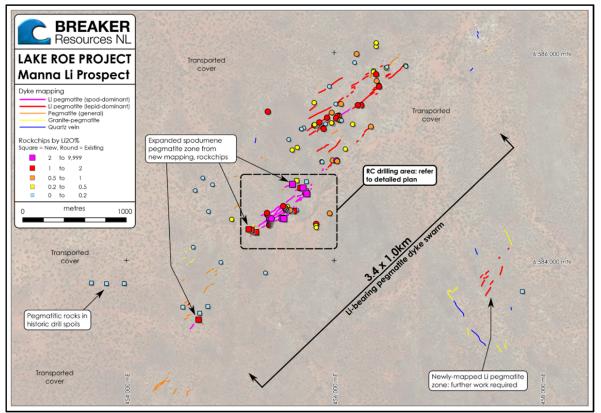


Figure 2: Plan of the Manna Lithium Prospect, showing surface mapping and rock chip information. The area covered by the maiden RC drilling is indicated (see inset Figure 3 below).

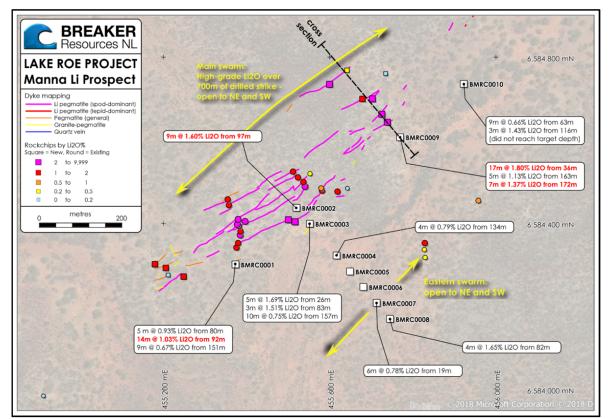


Figure 3: Plan of the spodumene-dominant zone of the Manna Lithium Prospect, showing the maiden RC drilling collars and results, plus surface mapping and rock chip information.

Drilling Details

The goal of the drilling was to obtain first-pass information on the width, grade and continuity of the lithium-bearing pegmatite observed at surface. Ten reconnaissance RC drill holes were completed for a total of 1,503m (BMRC0001 to BMRC0010).

Five of the RC drill holes tested a 700m strike length of the Manna pegmatite swarm, in an area of outcropping spodumene-rich pegmatite dykes (Figures 2 and 3; BMRC0001-0003; BMRC0009-0010). These drill holes were designed to drill through the full width of the main spodumene pegmatite zone, from hangingwall to footwall. BMRC0010 did not reach the footwall of the main zone, due to excessive groundwater inflows.

An exploratory fence of five RC drill holes was also completed extending southeast of the main zone to test for the presence of further lithium-bearing pegmatite across an area of no outcrop (BMRC0004 to BMRC0008). Further details of the drilling are provided in Annexure 1.

Drilling Results

The five RC holes targeting the outcropping spodumene-rich pegmatite all returned high-grade intercepts of spodumene-hosted lithium mineralisation. Better intersections include 17m @ 1.80% Li₂O (BMRC0009; Figure 3), 14m @ 1.03% Li₂O (BMRC0001) and 9m @ 1.60% Li₂O (BMRC0002). A summary of significant intersections is provided in Appendix 1.

The drilling indicates a 150m- to 200m-wide swarm of spodumene-rich dykes extending over a distance of at least 700m, with individual pegmatite dykes up to 15m in (true) width. The mineralised pegmatite encountered in the drilling can generally be linked to mineralised pegmatite observed at surface, suggesting good continuity in the dip dimension (Figure 4).

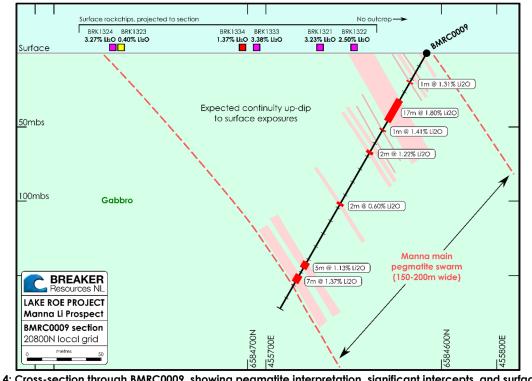


Figure 4: Cross-section through BMRC0009, showing pegmatite interpretation, significant intercepts, and surface rock chip information. Continuity is expected between drill hole intercepts and surface exposures.

Mineralisation in the main swarm (Photo 1) remains open in all directions. Visual logging along the 700m-long outcrop (Figure 3) indicates that the lithium mineralogy varies from spodumene-only in the southwest to spodumene-dominant to the northeast (up to 10% lepidolite, by volume).

The pegmatite dykes dip approximately 60-70° to the southeast, cutting across north-southtrending greenstones dominated by basalt and gabbro.

Weathering of the pegmatite is negligible. This is reflected in the presence of fresh, high-grade spodumene at surface and a base of complete oxidation of approximately 3m below surface in the majority of the drilled area, extending to 15m below surface at the northeastern limit of the drilling.

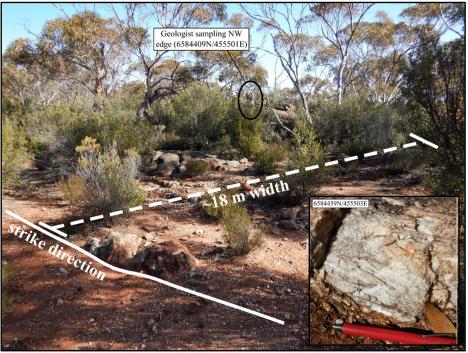


Photo 1: Manna Li Prospect: 18m-wide spodumene pegmatite outcrop; Inset photo of spodumene-rich (long, slender crystals) pegmatite outcrop

A reconnaissance line of five RC drill holes extending southeast of the main pegmatite outcrop identified new lithium-mineralised pegmatite in two holes, BMRC0007 and BMRC0008 (Figure 3). BMRC0007 and BMRC0008 both intercepted a ~20m wide zone of multiple lithium-mineralised pegmatite dykes (up to 4m @ 1.65% Li₂O in BMRC0008). This mineralisation is not exposed at surface and also remains open in all directions.

Mapping and Rockchips

In addition to the RC drilling, further reconnaissance mapping and rock chip sampling was undertaken in the vicinity of the Manna Li Prospect as summarised in Appendix 2. Further details of the rock chip sampling are provided in Annexure 1.

The mapping and sampling of the main 700m-long spodumene pegmatite zone at Manna (Figure 3) confirmed the extent and grade continuity of the pegmatite dykes in that area, returning a number of new, high-grade rock chip results from the northern end of that zone (up to 3.38% Li₂O in BRK1333).

The mapping and rock chip sampling also extended the size of the overall Manna lithium-bearing pegmatite swarm to \sim 3.4km x 1.0km, following the discovery of another spodumene-bearing pegmatite \sim 1.0km southwest of the area of RC drilling (1.88% Li₂O in BRK1339; Figure 2).

Further afield (outside the 3.4km x 1.0km area), a new, separate zone of lithium-bearing pegmatite was discovered ~2.0km to the east-southeast (Figure 2). Further mapping and rock chip sampling are planned to assess the potential of this area.

Collectively, the results highlight the potential for a large, previously unexplored field of LCT pegmatite.

Future Plans

Further steps are planned to gauge the size and economic potential of the discovery to assist in formulating an appropriate strategy for monetising it in a way that yields the maximum benefit to the Company's core focus on gold.

A multi-element auger surface geochemistry program is underway over a 90km² area that will simultaneously assess the potential for gold, lithium and other pegmatite-related metals including tantalum, tin, niobium, cesium and rubidium.

A short program of diamond drilling is also planned to obtain samples for preliminary mineralogy and metallurgical studies and to confirm the pegmatite orientations.

Tom Sanders Executive Chairman Breaker Resources NL

13 November 2018

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Michael Outhwaite and Tom Sanders, Competent Persons, who are Members of the Australian Institute of Geoscientists and the Australasian Institute of Mining and Metallurgy respectively. Mr Outhwaite consults to Breaker Resources NL through an entity he controls on a regular basis; he is also a shareholder in the Company. Mr Sanders is an executive of Breaker Resources NL and his services have been engaged by Breaker on an 80% of full time basis; he is also a shareholder in the Company. Mr Sanders is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Outhwaite and Mr Sanders consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource and Exploration Target at the Bombora Gold Deposit is based on information announced to the ASX on 6 September 2018. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Classification	Tonnes	Au (g/t)	Ounces
Indicated	12,549,000	1.5	624,000
Inferred	12,050,000	1.2	460,000
Total	24,599,000	1.4	1,084,000

Notes:

• Reported at 0.5 g/t Au cut-off

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1 – RC Drilling Results

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Li₂O %	Nb₂O₅ ppm	Ta₂O₅ ppm	Logged lithium mineralogy (spod = spodumene, lep = lepolite)
BMRC0001	197	6584297	455364	428	-60	320	27	28	1	0.66	34	17	Spod only
Main Zone							52	53	1	0.58	60	47	Spod only
							55	58	3	1.19	44	37	Spod only
							75	76	1	1.34	64	42	Spod only
							80	85	5	0.93	59	29	Spod only
							92	106	14	1.03	60	39	Spod only
							143	144	1	1.25	92	49	Spod only
							151	160	9	0.67	59	34	Spod only
							180	181	1	0.42	47	37	Spod only
BMRC0002	173	6584439	455522	426	-60	319	22	23	1	0.94	57	61	Spod only
Main Zone	170	0001107	100022	120	00	017	26	29	3	1.04	49	43	Spod only
Main Zone							48	50	2	1.08	79	65	Spod only
							53	54	1	0.65	29	28	Spod only
							97	106	9	1.60	83	56	Spod only
							129	130	/	0.63	92	59	Spod only
							138	139	1	0.88	133	87	Spod only
							146	150	4	0.80	75	55	Spod only
							140	156	4	1.29	117	83	Spod only
BMRC0003	222	6584404	455553	426	-60	319	26	31	5	1.69	90	64	Spod only
Main Zone	ZZZ	0004404	455555	420	-60	317	72	74	2	0.67	49	41	Spod only
Main Zone							83	86	2	1.51	58	41	
							109	110	-	0.52			Spod only
									1		23	36	Spod only
							113	115	2	1.35	89	50	Spod only
							129	132	3	1.22	62	31	Spod only
							157	167	10	0.75	50	27	Spod only
							171	173	2	0.66	44	33	Spod only
							192	193	1	0.53	49	28	Spod only
							199	204	5	0.75	81	37	Spod only
							209	212	3	1.30	116	44	Spod only
BMRC0009	198	6584608	455770	420	-60	320	22	23	1	1.31	69	71	Spod only
Main Zone							36	53	17	1.80	77	41	Spod dominant, 1% to 10% lep
							59	60	1	1.41	53	58	Spod only
							76	78	2	1.22	70	50	Spod dominant, trace lep
							115	117	2	0.60	19	64	Spod only
							163	168	5	1.13	79	40	Spod only
							172	179	7	1.37	90	31	Spod only
BMRC0010	186	6584736	455923	420	-60	320	31	33	2	0.70	84	67	Spod dominant, 5% lep
Main Zone							63	72	9	0.66	37	22	Spod dominant, 5% lep
							85	87	2	0.64	46	33	Lep dominant, some spod
							93	95	2	1.50	76	58	Lep dominant, some spod
							116	119	3	1.43	98	70	Spod dominant, 5% lep
							123	125	2	0.92	70	43	Spod dominant, 5% lep
BMRC0004	149	6584323	455617	425	-60	320	134	138	4	0.79	76	41	Spod only
BMRC0005	90	6584285	455649	425	-60	321				NSR			
BMRC0006	90	6584246	455682	425	-60	320				NSR			
BMRC0007	90	6584246	455682	425	-60	319	16	17	1	0.70	59	63	Spod only
							19	25	6	0.78	66	49	Spod only
							28	29	1	1.18	96	76	Spod only
BMRC0008	108	6584170	455746	427	-60	319	82	86	4	1.65	77	67	Spod dominant, 10% lep
		555 1170		.27		517	88	90	2	0.49	53	47	Spod dominant, 10% lep
							92	93	1	0.47	44	45	Spod dominant, 10% lep
	-						97	99	2	1.16	54	4J 60	Spod dominant, 10% lep
							,,	, ,	۷.	1.10	54		

Appendix 1 Notes

- Significant intercepts from BMRC0001-0010, based on 1m riffle-split samples
- True width is estimated at approximately 85% of down-hole length
- Significant intercepts are reported at >0.4% Li2O, with maximum 3m internal dilution
- For Nb₂O₅ and Ta₂O₅ composite calculations, 1m intervals with below detection values were assigned values of zero
- NSR denotes no significant results
- MGA coordinates; Zone 51

APPENDIX 2 – Rock Chip Results

Sample	North	East	Width	Li2O %	Ta₂O₅ ppm	Nb ₂ O ₅ ppm	Comment
BRK1321	6584663	455726	2	3.23	56	60	Pegmatite, alluvium surrounding
BRK1322	6584644	455739	3	2.50	58	130	Pegmatite, rubble surrounding
BRK1323	6584769	455642	1	0.40	46	117	Pegmatite, 050 strike, bit weathered
BRK1324	6584735	455600	1	3.27	100	157	Pegmatite, at least 15m long
BRK1325	6584409	455501	18	0.70	60	37	Sample of coarse crystals in pegmatite
BRK1326	6584409	455501	18	2.11	82	72	Pegmatite groundmass
BRK1327	6584404	455517	18	0.03	13	27	Sample of coarse crystals in pegmatite
BRK1328	6584404	455517	18	2.46	36	94	Pegmatite groundmass
BRK1329	6584272	455249	5	1.94	103	130	Pegmatite, in dyke zone of at least 15m
BRK1330	6584276	455212	4	0.00	2	х	Sulphidic sediment adjacent to pegmatite
BRK1331	6584293	455206	4	1.62	83	126	Mostly granitic dyke
BRK1332	6584302	455180	6	1.20	82	96	Mostly granitic dyke
BRK1334	6584700	455679	2	1.37	197	133	Pegmatite
BRK1333	6584700	455703	1	3.38	42	60	Pegmatite, porphyry in hangingwall
BRK1335	6584761	455735	2	0.04	111	130	Margins not observed, oxidised spodumene
BRK1336	6583699	457814	10	0.01	1	х	Granite, trace of pegmatite texture
BRK1337	6583555	454786	5	0.10	56	104	Granite, NE trend
BRK1338	6583490	454708	2	0.06	64	80	Granite, NE trend
BRK1339	6583427	454697	1	1.88	78	139	Pegmatite, rubbly
BRK1340	6583548	454546	2	0.03	64	126	Granite
BRK1341	6583775	453981	unknown	0.01	24	67	Drillhole, pegmatoidal granites
BRK1342	6583775	453981	unknown	0.02	28	44	Drillhole, pegmatoidal granites
BRK1343	6583774	453811	unknown	0.01	54	66	Drillhole, pegmatoidal granites
BRK1344	6583780	453665	unknown	0.00	40	67	Drillhole, pegmatoidal granites
BRK1345	6587246	455057	15	0.01	1	х	Pegmatoidal quartz vein?
BRK1346	6587247	455040	15	0.00	0	х	Pegmatoidal quartz vein?
BRK1347	6587071	454956	15	0.00	1	х	Pegmatoidal quartz vein?

Appendix 2 Notes

- True width is estimated at approximately 85% of horizontal sampling interval
- MGA coordinates; Zone 51
- "x" denotes below detection

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	RC drill holes were drilled to variable depths under supervision of a geologist. RC samples were riffle split in 1m intervals to produce a ~3kg sample. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. First-pass rock chip (channel / grab) sampling occurred across individual dykes with all samples being analysed by a commercial laboratory (MinAnalytical).
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	RC sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples. Channel rock chip sampling techniques were used to obtain a representative sample across each dyke.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	All RC and rock chip samples were analysed by MinAnalytical Laboratories using a sodium peroxide fusion digest and ICP-MS finish after initial crushing and pulverisation.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well- fitting stuff box to ensure material to the outside return was minimised. Drilling

Criteria	JORC Code explanation	Commentary
		was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross- hole contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database. The pegmatite dykes sampled had
		systematic observations made at each site including width, visible strike length and strike direction. Rock chips are not appropriate for Mineral Resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full and all sample sites were described.
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	Not core.
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi- tier riffle splitter. Whole samples were crushed and pulverised.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative sub-sample for analysis. A grind quality target of 85% passing - 75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise	No sub-sampling undertaken.

Criteria	JORC Code explanation	Commentary
	representivity of samples.	
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Certified Reference Materials and sample duplicates for RC drilling are taken at least three times in every 100 samples.
	sompling.	No field duplicates were taken for the rock chip sampling however crude channel sampling techniques were employed to represent the insitu material sampled.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	2-3kg sample size is considered fit for purpose.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Industry standard procedures considered appropriate with a peroxide fusion (total dissolution) as standard four acid digest is not considered strong enough to break down the highly resistive elements.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not relevant; no geophysical tool used.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	MinAnalytical used Certified Reference Materials and/or in house controls, blanks, splits and replicates which are analysed with each batch of samples. These quality control results are reported along with the sample values in the final report. Selected samples are also re-analysed to confirm anomalous results.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Results verified by alternative Company personnel.
assaying	The use of twinned holes.	Not relevant at this preliminary stage.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	The Company has not adjusted any assay data, other than to convert Lithium (ppm) to Li ₂ O (%), Ta (ppm) to Ta ₂ O ₅ (ppm) and Nb (ppm) to Nb ₂ O ₅ (ppm).

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Handheld GPS used to record RC drill and rock chip location (+/- 5 metre accuracy).
	Specification of the grid system used.	GDA94 (MGA) Zone 51 Southern Hemisphere.
	Quality and adequacy of topographic control.	Fit for purpose.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Randomly selected sampling traverses across strike at observable outcrop locations.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No.
	Whether sample compositing has been applied.	No.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	RC drilling and channel sampling across the entire width of pegmatite should produce a relatively unbiased representative sample.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	An estimated true width adjustment of approximately 85% is reported for RC drilling lengths.
Sample security	The measures taken to ensure sample security.	Samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in a Company facility for future
		reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The drilling and rock chip samples are located on tenement E28/2522, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No previous exploration or identification of lithium mineralisation is recorded in the area or historical exploration observed.
Geology	Deposit type, geological setting and style of mineralisation.	Typical LCT pegmatite model occurring as swarms of dykes in a preferred corridor orientation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 and 2 for significant results from the RC and diamond drilling. Drill hole and rock chip locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No data aggregation methods have been employed; results are reported "as-is" from the laboratory. Where relevant, all reported results have been arithmetic length weighted. None undertaken.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with	An estimated true width adjustment of approximately 85% is reported for RC drilling and rock chip sampling lengths.
lengths	respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results comprehensively reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	