

ASX ANNOUNCEMENT

New high-grade results continue to grow Bombora deposit along strike, to the east, and at depth

Drilling underway to extend mineralisation in several areas; Results indicate expanding open pit potential

Highlights

- × Latest drill results from the 1.1Moz[#] Bombora gold deposit include:
 - BBRC1020 9m @ 13.86g/t Au (incl. 4m @ 29.99g/t)
 - BBRC0995 4.0m @ 10.79g/t Au
 - BBDD0078 15m @ 4.99g/t Au (incl. 11.1m @ 6.26g/t)
 - BBRD0782 12.9m @ 2.35g/t Au (incl. 5.2m @ 4.44g/t)
- Results extend the deposit 100m to the north drilling in progress to test a further 600m to the north where significant intersections are present in wide-spaced reconnaissance drilling
- × Shallow, high-grade discovery in hangingwall (outside) of Bombora quartz dolerite expands gold potential to the east and southwards into Bombora South Prospect
- × Further extensions at depth; Bombora open at depth over its entire 2.3km length
- × Strong infill drilling results, which will help underpin the next Resource upgrade
- Satellite gold discovery confirmed at Crescent Prospect 2km north of Bombora; shallow gold confirmed over an area of 300m x 200m that is open to north and down-dip
- Drilling in the Bombora South area indicates primary gold mineralisation on three separate mineralised faults, enhancing the potential for southern extensions to the Bombora deposit
- Drilling continues with four drill rigs to expand the Resource and identify the outer limits of expanding conceptual open pit(s)
- PFS timing linked to finalising open pit potential; this will trigger the process to start quantifying an underground resource using cut-off grades more appropriate for underground mining

Breaker Resources NL (ASX: BRB) is pleased to report more strong drilling results which have further expanded the known extent of the Bombora gold deposit in three directions, paving the way for further increases and upgrades in the current 1.1 million-ounce Resource[#].

The new drilling results at Bombora, which is part of the Lake Roe Gold Project located 100km east of Kalgoorlie, extend the known mineralisation 100m along strike to the north as well as to the east and at depth.

The outstanding new results mean that the proposed open pit continues to expand. Breaker will not complete the Pre-feasibility Study on Bombora until the boundaries of the pit are finalised.

The latest results relate to 11,889m of extensional and infill RC and diamond drilling at the Bombora gold deposit (90 holes), and 3,034m of exploratory RC and diamond drilling (32 holes) at the Crescent and Bombora Prospects located to the north and south of Bombora respectively (Figures 1-3).

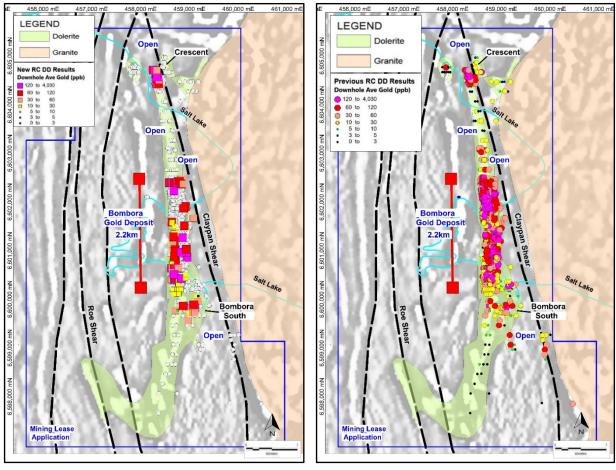


Figure 1a: New RC/diamond drill holes colour-coded by downhole average gold

Figure 1b: Bombora global RC/diamond drill holes colour-coded by downhole average gold

RC & Diamond Drill Program

The Bombora drilling is part of an ongoing drill program designed to grow and upgrade the 1.1Moz# Bombora gold deposit.

The Bombora drilling consisted of 16 extensional drill holes; 40 infill drill holes aimed at upgrading the Resource category, including four new section lines (6600140N, 6600340N, 6600570N and 6602330N); and 34 shallow resource "close-off" holes. The drilling comprised 70 reverse circulation (**RC**) drill holes (6,701m), two diamond drill holes (316m) and 19 RC-precollared diamond drill holes (4,872m).

The Bombora South Prospect drilling consisted of 19 RC holes for 1,866m and one RC-pre-collared diamond drill hole (202m). The Crescent Prospect drilling comprised 12 RC drill holes for 966m.

The drill holes are shown in plan on Figures 1 to 2. A long-section of the Bombora drilling is shown in Figure 3. Further details of the drilling are provided in Appendix 1 and Annexure 1.

Results: Bombora Gold Deposit

Seventy percent of all drill holes, including the extensional and exploratory holes, intersected significant gold mineralisation as summarised in Appendix 1 (which provides a full list of assay results above a nominal lower cut-off grade of 0.2g/t Au). Selected drill hole intersections are shown on Figure 2 and are listed in Table 1 below.

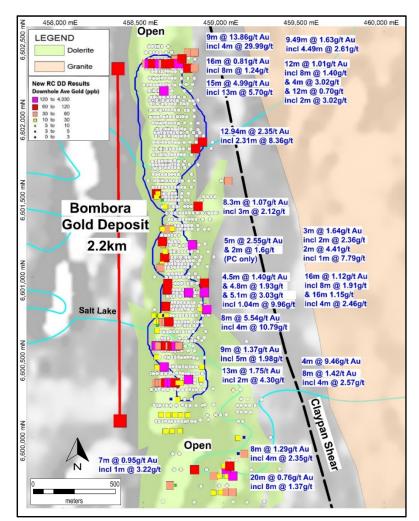
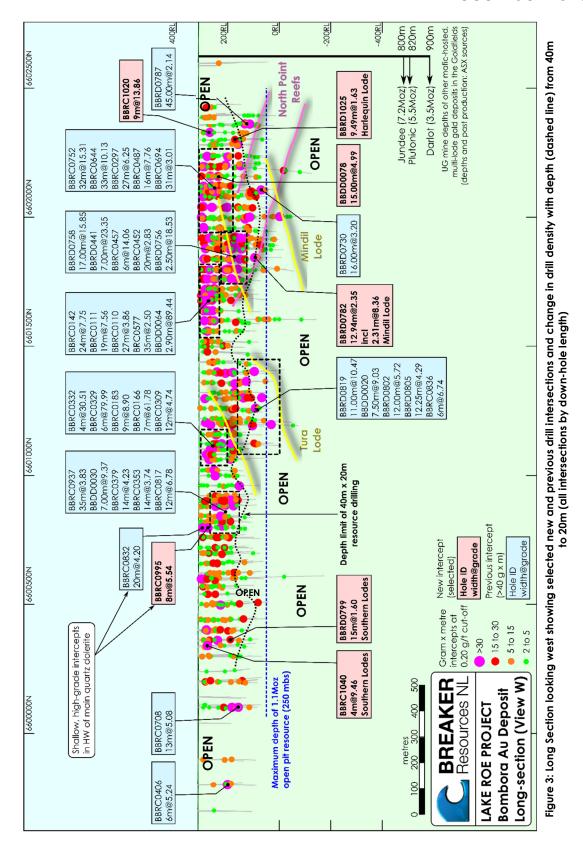


Figure 2: New Bombora RC and diamond drill holes with selected intersections colour-coded by average downhole gold over the entire drill hole over aeromagnetic image with interpreted geology (previous RC and diamond drilling as grey dots; A\$2,000 Whittle open pit shell in blue, ASX Release 18 April 2018)

Hole No.	Deposit Prospect	Northing	Extensional or Infill	Interval @ g/t gold	From	То	Includes Interval @ g/t gold
BBRC0995	Bombora	6600797	Extensional	4m @ 10.79g/t	44	48	-
BBRD0782	Bombora	6601841	Extensional	12.94m @ 2.35g/t	247.06	260	5.17m @ 4.44g/t
							3.17m @ 6.78g/t
							2.31m @ 8.36g/t
							1m@ 5.23g/t
				5.35m @ 1.08g/t	264.65	270	1m@2.03g/t
BBRD1025	Bombora	6602302	Extensional	8.49m @ 1.78g/t	161.51	170	4.49m @ 2.61g/t
							1.49m @ 3.87g/t
BBRD0325	Bombora	6601220	Extensional	4m @ 2.37g/t	302	306	2m @ 4.41g/t
							1m @ 7.79g/t
BBDD0078	Bombora	6602159	Infill	15m @ 4.99g/t	82	97	11.07m @ 6.26g/t
BBRD0585	Bombora	6601199	Infill	5m @ 2.55g/t	95	100	2m @ 3.72g/t
BBRC1017	Bombora	6602329	Infill	16m @ 0.81g/t	16	32	8m@1.24g/t
BBRC1020	Bombora	6602329	Infill	9m @ 13.86g/t	47	56	5m @ 24.29g/t
							4m @ 29.99g/t
BBRC1024	Bombora	6602329	Infill	12m @ 1.01g/t	184	196	8m@1.4g/t
							4m @ 2.09g/t
				4m @ 3.02g/t	200	204	
				12m @ 0.7g/t	212	224	2m @ 3.02g/t
							1m@ 5.41g/t
BBRC1039	Bombora	6600340	Infill	8m @ 1.42g/t	44	52	4m @ 2.57g/t
BBRC1040	Bombora	6600340	Infill	4m @ 9.46g/t	40	44	
BBRC1041	Bombora	6600340	Infill	5m @ 1.61g/t	99	104	2m @ 3.01g/t
BBRC1046	Bombora	6600439	Infill	2m @ 1.35g/t	30	32	
				9m @ 1.37g/t	41	50	5m @ 1.98g/t
							1m @ 4.57g/t
BBRD0799	Bombora	6600359	Infill	15m @ 1.6g/t	139	154	13m @ 1.75g/t
							2m @ 4.3g/t
BBRD0912	Bombora	6600902	Infill	16m @ 1.12g/t	28	44	8m@1.91g/t
				16m @ 1.15g/t	108	124	4m @ 2.46g/t
BBRD0913	Bombora	6600902	Infill	4.5m @ 1.4g/t	71.5	76	3.5m @ 1.72g/t
				4.8m @ 1.93g/t	91.9	96.7	1.2m @ 3.86g/t
				5.1m @ 3.03g/t	100.9	106	1.04m @ 9.96g/t
							1.55m @ 3.09g/t
				3.7m @ 1.24g/t	113	116.7	
				1.15m @ 4.71g/t	123.55	124.7	

Table 1: Selected drill results: Bombora gold deposit

Analysis: Bombora Gold Deposit


The results indicate that the outer limit of potential open pit mining is likely to continue expanding along strike, at depth and to the east. Fifteen of the 16 extensional drill holes designed to ascertain the outer limits of potential open pit mining have returned significant results as summarised in Appendix 1.

The new drilling, which includes results of 9m @ 13.86g/t Au including 4m @ 29.99g/t Au, extends the Bombora gold deposit 100m to the north based on new drilling on sections 6602300N, 6602330N, 6602360N and 6602400N. Further step-out drilling is currently underway to scope the potential for up to 600m of further extensions to the north in an area where significant gold mineralisation was encountered in previous reconnaissance RC drilling (Figures 1 and 5).

The Bombora deposit remains open at depth along its entire 2.3km strike extent (Figure 3). New extensional results on drill lines 6601840N (BBRD0782), 6601220N (BBRD0325), 6601800N (BBRD0883) and 6600960N (BBRD0932) continue this trend.

BBRC0995 (4m @ 10.79g/t Au from 44m) confirmed a new, zone of shallow, high-grade gold in the hangingwall of the main mineralisation zone that is not hosted by quartz dolerite and correlates with the southern strike extensions of the Tura Fault (Figures 3 and 4). BBRC0995 was drilled below a shallow discovery hole announced on 13 June 2018 (BBRC0832; 20m @ 4.2g/t Au including 4m @ 15.49g/t). The results open up the gold potential extending southwards over considerable distance into Bombora South Prospect.

Infill drilling on new drill sections on 6602330N, 6600570N and 6600340N returned strong results that continue to upgrade the continuity of the Bombora gold deposit. Further results are pending on new infill/extension lines 6600140N and 6600040N at the south end of the Bombora gold deposit.

Results/Analysis: Bombora South Prospect

Exploratory drilling at the Bombora South Prospect (20 holes for 2,068m) was aimed at finding the primary source of extensive supergene gold anomalism identified by previous aircore and RC drilling (Figure 4; ASX Release 16 March 2016).

The Bombora South drill holes are located on Figure 4.

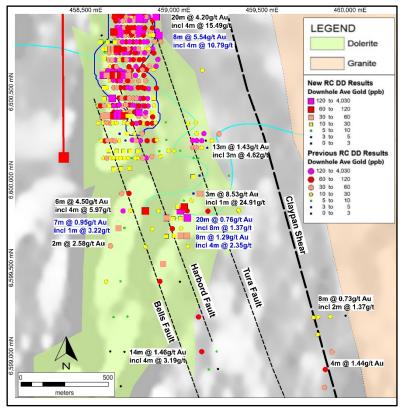


Figure 4: Bombora Prospect, Lake Roe Project - Global RC/diamond drill hole location plan with thematic downhole average gold values over the entire drill hole with selected RC and diamond drill intersections

A full list of assay results above a nominal lower cut-off grade of 0.2g/t Au is provided in Appendix

1. Selected drill hole intersections are shown on Figure 4 and listed in Table 2 below.

Hole No.	Deposit Prospect	Northing	Objective	Interval @ g/t gold	From	То	Includes Interval @ g/t gold
BBRC1065	Bombora South	6599760	Exploratory	20m @ 0.76g/t	44	64	8m@1.37g/t
BBRC1066	Bombora South	6599801	Exploratory	8m@1.29g/t	28	36	4m @ 2.35g/t
BBRD0407	Bombora South	6599799	Exploratory	7m @ 0.95g/t	146	153	1.2m @ 1.43g/t
							1m @ 3.22g/t

Table 2: Selected drill results: Bombora South Prospect

The Bombora South drilling successfully confirmed a primary gold mineralisation in two areas that correlate with the Bells and Harbord Faults (BBRC1065 and BBRD0407; Figure 4). These results augment primary gold results from the inferred southern extensions of the Tura Fault obtained in BBRC0995 (4m @ 10.79g/t Au from 44m). Collectively, the results enhance the gold potential of the Bombora South Prospect over a wide area.

BBRC1065 on 6599760N intersected 20m @ 0.76g/t Au from 44m (including 8m @ 1.37g/t) which coincides with a zone of strong primary silica-albite-sulphide alteration from 51-55m with an associated zone of supergene dispersion identified by previous drilling.

BBRD0407 intersected 7m @ 0.95g/t Au including 1m @ 3.22g/t correlating with a previous RC drill intersection of 6m @ 4.50g/t Au (BBRC0406; ASX Release 6 July 2017).

Results/Analysis: Crescent Prospect

Exploratory RC drilling at the Crescent Prospect (12 RC drill holes for 966m) located 2km north of the Bombora deposit was aimed at further assessing the discovery holes tabled in the Company's ASX Release of 31 July 2018 (eg. 11m at 3.84g/t Au from 1m).

The Crescent Prospect drill holes with selected intersections are shown on Figures 5 and 6 below. A cross-section is provided in Figure 7.

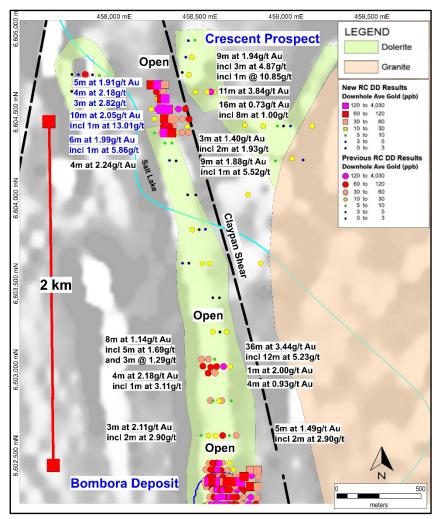


Figure 5: Bombora North – Crescent Prospect – RC/diamond drill hole location plan with thematic downhole average gold values over the entire drill hole with selected RC and diamond drill intersections

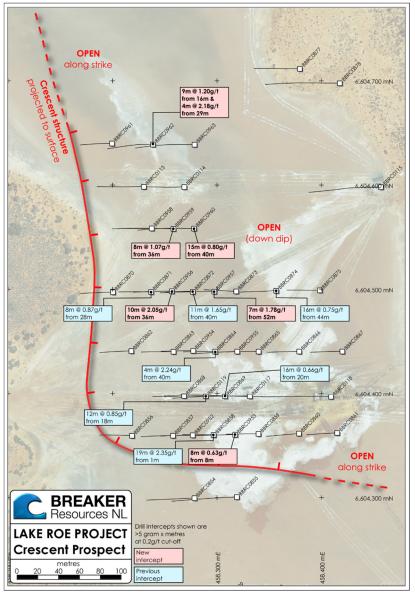


Figure 6: Crescent Prospect drill hole location plan with selected drill intersections

A full list of assay results above a nominal lower cut-off grade of 0.2g/t Au is provided in Appendix 1. Selected drill hole intersections are listed in Table 3 below.

Hole No.	Deposit Prospect	Northing	Objective	Interval @ g/t gold	From	То	Includes Interval @ g/t gold
BBRC0956	Crescent	6604498	Exploratory	10m @ 2.05g/t	36	46	1m@13.01g/t
BBRC0957	Crescent	6604498	Exploratory	6m @ 1.99g/t	52	58	1m@ 5.86g/t
BBRC0962	Crescent	6604639	Exploratory	5m @ 1.91g/t	20	25	2m @ 3.81g/t
				4m @ 2.18g/t	29	33	1m @ 6.12g/t
				3m @ 2.82g/t	29	32	

Table 3: Selected drill results: Crescent Prospect

Drilling at the Crescent Prospect successfully confirmed the discovery of continuous shallow gold mineralisation over a 300m x 200m area that has good open pit potential that is open to the north and down-dip. This is the first satellite gold system identified outside the main Bombora deposit.

The gold mineralisation is related to a northwest-dipping structure and consists of a quartz reef zone, within a mixed mafic and sedimentary host rock sequence.

The results indicate:

- (i) increasing diversity of mineralisation style (hosted outside the Bombora quartz dolerite like the BBRC0995 intersection in the hangingwall of the Bombora deposit);
- (ii) The camp-scale growth potential of the Lake Roe Project; and
- (iii) The economic potential extending north of the Bombora deposit.

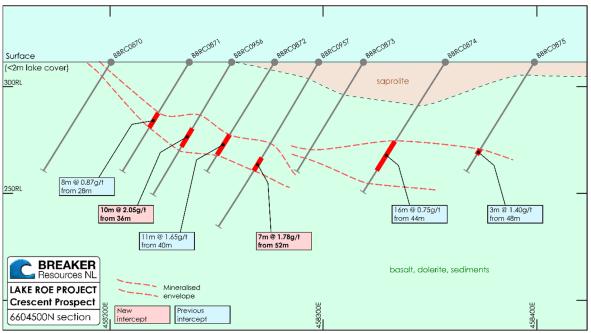


Figure 7: Crescent Prospect: Cross-section 6604500N with selected drill intersections

Background

The 2.2km Bombora discovery forms part of an 8km-long greenfields gold system concealed by thin transported cover (typically 5-10m) within the 100%-owned Lake Roe Project, located 100km east of Kalgoorlie, WA.

Most of the gold at Bombora is stratabound, occurring preferentially in quartz dolerite in three dominant "stacked" mineralised geometries in a "textbook" structural framework over the entire area which has had detailed drilling. Similar controls and geometries are apparent in many other deposits, including the Golden Mile in Kalgoorlie.

The gold distribution is controlled by multiple, stacked, steep NNW-trending mineralised faults with "linking" flat and/or west-dipping mineralised faults that are also stacked and commonly well mineralised. Gold occurs in sulphide-rich lodes and in quartz-sulphide stockwork zones situated preferentially in the upper, iron-rich part of a fractionated dolerite.

The sulphide lodes typically contain 2-5% pyrite and pyrrhotite accompanied by extensive silica, albite, biotite and carbonate alteration with varying amounts of (tensional) quartz-sulphide veinlets that can form zones of stockwork mineralisation.

Metallurgical test work indicates gold recoveries in the range of 96% to 99% in oxide and fresh mineralisation and gravity gold of 31% to 90%. The metallurgical testwork also indicates low-cost gold processing based on modest hardness and a relatively coarse grind size of 106-125µm (ASX Release 15 January 2018).

Tom Sanders Executive Chairman Breaker Resources NL

12 December 2018

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders, Competent Person, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Sanders is an executive of Breaker Resources NL and his services have been engaged by Breaker on an 80% of full time basis; he is also a shareholder in the Company. Mr Sanders has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource and Exploration Target is based on information announced to the ASX on 6 September 2018. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Classification	Tonnes	Au (g/t)	Ounces
Indicated	12,549,000	1.5	624,000
Inferred	12,050,000	1.2	460,000
Total	24,599,000	1.4	1,084,000

Notes:

Reported at 0.5 g/t Au cut-off

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1

Hole No.	Deposit Prospect	Extensional, Infill or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0076	Bombora	Extensional	153.33	6601440	458841	313	-61	85	51	52	1	0.33	Half Core
									80.7	89	8.3	1.07	Half Core
					including				80.7	84	3.3	0.71	Half Core
					including	3			83	84	1	1.16	Half Core
					and				86	89	3	2.12	Half Core
					including	1			87	88	1	3.31	Half Core
									112	113	1	0.24	Half Core
									119	120	1	0.46	Half Core
									127	128	1	0.69	Half Core
BBRC0995	Bombora	Extensional	102	6600797	458896	314	-60	269	40	48	8	5.54	Composite
					including				44	48	4	10.79	Composite
BBRC1055	Bombora	Extensional	150	6600040	458729	314	-59	269	117	120	3	0.64	Split
					including				117	119	2	0.79	Split
					including	3			117	118	1	1.01	Split
BBRC1060	Bombora	Extensional	138	6600038	458637	313	-59	270	66	67	1	0.24	Split
BBRD0325	Bombora	Extensional	436.61	6601220	458618	313	-61	91	63	65	2	1.68	Split
					including	1			64	65	1	2.74	Split
									88	91	3	1.64	Split
					including)			89	91	2	2.36	Split
					including	2			90	91	1	3.01	Split
									98	100	2	1.40	Split
					including	3			99	100	1	2.56	Split
									103	109	6	0.56	Split
					including)			103	104	1	1.10	Split
					and				105	106	1	0.91	Split
					and				108	109	1	1.10	Split
									120	121	1	2.17	Split
									242.83	244	1.17	0.54	Half Core
									253.6	256	2.4	0.44	Half Core
					including	3			255	256	1	0.65	Half Core
						Í		1	262	264	2	1.74	Half Core
									270	271	1	0.24	Half Core
									282	284	2	0.27	Half Core
									302	306	4	2.37	Half Core
					including	3			302	303	1	0.51	Half Core
					and	9			304	306	2	4.41	Half Core
					including	r			305	306	1	7.79	Half Core
BBRD0782	Bombora	Extensional	372.4	6601841	458868	313	-60	272	132	136	4	0.27	Composite
BDRD0702	bombola	Externational	0/2.4	0001041	400000	010	00	2/2	242	243	1	1.15	Half Core
									247.06	240	12.94	2.35	Half Core
					including	1		!	249.83	255	5.17	4.44	Half Core
					including				249.83	253	3.17	6.78	Half Core
					including				250.69	253	2.31	8.36	Half Core
					and	1			258	260	2.31	2.99	Half Core
					including	1			258	259	1	5.23	Half Core
					" ICIOUII IS	, 			264.65	237	5.35	1.08	Half Core
				l	including			I	264.65	265.65		2.03	Half Core Half Core
					and	1			264.65	265.65	1	1.35	
					unu	1							Half Core
									314	315	1	0.90	Half Core
	D1	Forta a 1 1	201.10	(/01000	45000 (212	10	070	320	321	1	0.29	Half Core
BBRD0883	Bombora	Extensional	321.12	6601800	458826	313	-60	272	113	114	1	0.26	Half Core
									121	122	1	0.54	Half Core
									210.5	212	1.5	1.75	Half Core
									222	223	1	0.44	Half Core
									233	234	1	1.51	Half Core
									236	237	1	0.35	Half Core
									244	245	1	3.80	Half Core
									249	250	1	4.70	Half Core
									256	257	1	3.40	Half Core
								1	273	274	1	0.25	Half Core
									273 288 294	274 289 295	1	1.43	Half Core Half Core

Hole No.	Deposit Prospect	Extensional, Infill or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0932	Bombora	Extensional	279.26	6600961	458880	314	-60	269	8	16	8	0.49	Composite
					including		-		8	12	4	0.71	Composite
									20	28	8	0.41	Composite
									132	133	1	0.23	Half Core
					in a bushin a				135	137	2	2.30	Half Core
					including				135	136.3	1.3	3.03	Half Core
									169	170	1	0.22	Half Core
					including				176 176	178 177	1	0.83	Half Core Half Core
					"icioaling	,			202	203	1	0.36	Half Core
									268	269	1	0.21	Half Core
BBRD0934	Bombora	Extensional	177.88	6601599	459028	312	-60	269	122	123	1	0.49	Half Core
									127	128.3	1.3	3.45	Half Core
BBRD1001	Bombora	Extensional	270.91	6600360	458860	317	-60	268	207	208	1	0.27	Half Core
									212	213	1	1.34	Half Core
									234.35	240	5.65	0.65	Half Core
				1	including				239	240	1	1.27	Half Core
BBRD1008	Bombora	Extensional	309.86	6600439	458865	315	-60	270	191	192	1	0.77	Half Core
									246	247	1	0.26	Half Core
BBBB1010	Demois	Exclair a tair ail	201.0	((00000	450777	215	10	070	251	252.05	1.05	0.25	Half Core
BBRD1010	Bombora	Extensional	306.8	6602398	458777	315	-60	270	200 207	201 209	1	0.21	Half Core Half Core
					including				207		2	0.89	
					including				208	209 227	2	2.02	Half Core Half Core
				1	including		1	I	225	22/	2	3.22	Half Core
					Incloaing				223	237.2	3.2	0.90	Half Core
					including				234	235	1	1.70	Half Core
BBRD1011	Bombora	Extensional	351.87	6602398	458818	315	-60	269	24	28	4	0.21	Composite
22121011	20112014								206	213	7	0.40	Half Core
					including	1			206	207.07	1.07	1.28	Half Core
									225	226	1	0.34	Half Core
									249	250	1	2.34	Half Core
									263	264	1	0.30	Half Core
									267	269	2	0.49	Half Core
					including	1			267	268	1	0.59	Half Core
									273	275	2	2.30	Half Core
					including	1			274	275	1	3.43	Half Core
			000		150777	01.4	10	070	290	291	1	0.20	Half Core
BBRD1025	Bombora	Extensional	292	6602302	458777	314	-60	270	103	105	2	1.07	Half Core
									156 161.51	157 171	1 9.49	0.34 1.63	Half Core Half Core
					including				161.51	171	9.49	1.63	Half Core
					including				161.51	1/6	4.49	2.61	Half Core
					including				161.51	163	1.49	3.87	Half Core
					and				169	170	1.47	1.82	Half Core
									192.2	193.4	1.2	3.09	Half Core
									210	211	1	0.46	Half Core
BBRD1026	Bombora	Extensional	327.99	6602301	458817	314	-60	269	120	124	4	0.59	Half Core
									202	203	1	1.09	Half Core
									229	230	1	0.32	Half Core
									250	251	1	0.21	Half Core
									272	273	1	0.60	Half Core
					54 at 11				288	292	4	0.56	Half Core
					including	I			289	290	1	1.31	Half Core
	D	1. 000	1/0.0	(100150	and	01.4	50	070	291	292	1	0.58	Half Core
BBDD0078	Bombora	Infill	162.8	6602159	458628	314	-59	270	11.6	13	1.4	0.45	Half Core
									14 64	15 65	1	0.21	Half Core Half Core
									82	65 97	15	4.99	Half Core
				I	including	1	I	1	83	96	13	5.70	Half Core
					including				83	84	13	3.65	Half Core
					and	r			84.93	96	11.07	6.26	Half Core
					3.10				101	104	3	0.20	Half Core
					including	1			101	103	2	1.30	Half Core
								1	114	117	3	0.54	Half Core
									114	117	0	0.04	
					including				114	115	1	1.21	Half Core
					including								

Hole No.	Deposit Prospect	Extensional, Infill or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0585	Bombora	Infill	108	6601199	458806	312	-60	270	94	100	6	2.17	Split
(Precollar)					including	1			95	100	5	2.55	Split
					including	J			96	98	2	3.72	Split
									104	106	2	1.64	Split
BBRC0994	Bombora	Infill	192	6600798	458861	314	-59	269	100	104	4	0.40	Composite
BBRD1015	Bombora	Infill	276.8	6602359	458740	315	-60	272	145	146	1	0.43	Half Core
									149	150	1	0.38	Half Core
									175 181	177 183	2	2.15 1.79	Half Core Half Core
					including	1			181	183	1	3.15	Half Core
						,			186	187	1	0.24	Half Core
									191	197	6	0.38	Half Core
					including	1			191	192	1	0.67	Half Core
									198	199	1	0.27	Half Core
									200	201	1	0.20	Half Core
									208	209	1	0.24	Half Core
									213	221	8	0.71	Half Core
					including	1			213	214	1	0.51	Half Core
					and and				215 219	216 221	1 2	1.22 1.68	Half Core Half Core
					unu		1		258	260	2	0.38	Half Core
					including	1	I		259	260	1	0.55	Half Core
BBRD0799	Bombora	Infill	210.9	6600359	458781	315	-60	272	135	136	1	0.22	Half Core
									137	138	1	0.21	Half Core
									139	154	15	1.60	Half Core
					including				140	153	13	1.75	Half Core
				-	including	1		r	151	153	2	4.30	Half Core
					ingluding				161	165.2	4.2	0.46	Half Core
BBRD0912	Danahaya	Infill	231.18	6600902	including 458880	314	-60	267	163 28	164 44	1 16	1.05 1.12	Half Core Composite
BBRD0712	Bombora	17000	201.10	0000702	including		-00	207	36	44	8	1.12	Composite
						,			108	124	16	1.15	Composite
					including	J			108	112	4	1.26	Composite
					and				120	124	4	2.46	Composite
									212	213	1	0.24	Half Core
									218	219	1	0.33	Half Core
									223	224	1	0.22	Half Core
BBRD0913	Bombora	Infill	84	6600902	458782 including	314	-61	272	71.5 71.5	76 75	4.5	1.40	Half Core
					incidaing	1			84	85	3.5	1.72 0.23	Half Core Half Core
									85.45	88	2.55	0.23	Half Core
									91.9	96.7	4.8	1.93	Half Core
					including	1			95.5	96.7	1.2	3.86	Half Core
									100.9	106	5.1	3.03	Half Core
					including	1			100.9	101.94	1.04	9.96	Half Core
					and	-			104.45	106	1.55	3.09	Half Core
									111 113	112 116.7	1 3.7	0.30	Half Core Half Core
					including	1			113	113.7	1	1.24 1.01	Half Core
					2.20118	-			123.55	124.7	1.15	4.71	Half Core
									128	129	1	0.22	Half Core
									130.7	132	1.3	0.21	Half Core
BBRC1048	Bombora	Infill	174	6600238	458714	313	-59	270	120	124	4	0.79	Composite
BBRC1014	Bombora	Infill - new section	228	6602359	458697	315	-60	269	144	148	4	0.47	Composite
					in olu alie -				160	168	8	0.62	Composite
BBRC1017	Bombora	Infill - new section	72	6602329	including 458536	314	-60	271	160 16	164 32	4 16	0.76	Composite Composite
BBRCIUI/	Bombolu	min - new section	12	0002027	including		-00	4/1	20	28	8	1.24	Composite
BBRC1018	Bombora	Infill - new section	90	6602329	458556	313	-60	270	16	20	4	0.24	Composite
									48	52	4	0.37	Composite
									60	64	4	0.22	Composite
BBRC1019	Bombora	Infill - new section	108	6602329	458572	313	-59	269	28	36	8	0.28	Composite
									52	56	4	0.63	Composite
	D . 1	1	100	//00000	450.000	010		070	88	92	4	0.20	Composite
BBRC1020	Bombora	Infill - new section	138	6602329	458600	313	-58	272	44	45	1	0.28	Split Split (Composito
					including	1		l	47 47	56 52	9 5	13.86 24.29	Split/Composite Split
					including				47	52	- 5 - 4	29.99	Split
		+					1		60	64	4	0.37	Composite
												0.0/	
									72	76	4	0.36	Composite

Hole No.	Deposit Prospect	Extensional, Infill or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1021	Bombora	Infill - new section	132	6602329	458620	313	-59	270	68	72	4	0.26	Composite
BBRC1022	Bombora	Infill - new section	132	6602328	458640	313	-60	271	20	28	8	0.28	Composite
									68	74	6	0.52	Composite/Split
					including	9			68	69	1	0.54	Split
					and				70	73	3	0.68	Split
									84	88	4	0.26	Composite
									96	100	4	0.28	Composite
									108 116	112 120	4	0.24 0.31	Composite
BBRC1023	Bombora	Infill - new section	209	6602329	458679	314	-60	271	116	120	8	0.31	Composite Composite
BBRC1023	Bollibola	ITIM - New section	207	0002027	including		-00	2/1	120	124	4	0.63	Composite
						, 			136	140	4	0.29	Composite
									157	158	1	0.20	Split
									164	165	1	0.47	Split
BBRC1024	Bombora	Infill - new section	240	6602329	458719	314	-60	272	130	131	1	0.44	Split
									156	160	4	0.59	Composite
									171	172	1	0.67	Split
									184	196	12	1.01	Composite
					including				188	196	8	1.40	Composite
					including	2			188	192	4	2.09	Composite
									200	204	4	3.02	Composite
					in al calina				212	224	12	0.70	Composite/Split
					including				218	220	2	3.02	Split
DDDC1007	D a wala a wa	Infill new coolien	42	4400571	including 458580	315	41	270	219	220 24	1 8	5.41	Split
BBRC1027	Bombora	Infill - new section	42	6600571	including		-61	270	16	24	4	0.88	Composite Composite
BBRC1028	Bombora	Infill - new section	60	6600570	458598	315	-60	271	12	16	4	0.28	Composite
BBRC1020	Bombora	Infill - new section	78	6600570	458638	314	-60	271	24	28	4	0.39	Composite
DBRC1000	bombola	min - new section	70	000007.0	400000	014	00	2/1	44	48	4	0.49	Composite
BBRC1031	Bombora	Infill - new section	96	6600570	458662	314	-60	271	28	32	4	0.38	Composite
BBRC1032	Bombora	Infill - new section	114	6600570	458679	314	-60	270	66	69	3	0.98	Split
					including	3			66	68	2	1.30	Split
					including	3			67	68	1	1.65	Split
BBRC1033	Bombora	Infill - new section	126	6600570	458701	314	-60	271	16	20	4	1.09	Composite
									56	60	4	0.79	Composite
									76	80	4	0.54	Composite
									88	91	3	0.36	Split
BBRC1034	Bombora	Infill - new section	150	6600570	458721	313	-60	271	111	114	3	0.86	Split
NNNO1035	D h	1		((000000	including		50	0/0	113	114	1	1.43	Split
BBRC1035	Bombora	Infill - new section	66 96	6600339 6600340	458578 458616	313 314	-59	269 271	24 36	28 37	4	0.27 0.37	Composite
BBRC1037 BBRC1038	Bombora Bombora	Infill - new section Infill - new section	108	6600339	458638	314	-61 -61	268	24	36	12	0.3/	Split Composite
BBRC1030	Bollibola	ITTIM - HEW SECION	100	0000007	including		-01	200	24	28	4	1.07	Composite
					and	1			32	36	4	0.72	Composite
BBRC1039	Bombora	Infill - new section	120	6600340	458658	315	-60	269	16	20	4	0.33	Composite
			-						44	52	8	1.42	Composite
					including	3			48	52	4	2.57	Composite
									80	84	4	0.29	Composite
BBRC1040	Bombora	Infill - new section	138	6600340	458677	314	-60	269	40	44	4	9.46	Composite
BBRC1041	Bombora	Infill - new section	150	6600340	458698	314	-59	269	99	104	5	1.61	Split
ļ					including				100	102	2	3.01	Split
					including	í			101	102	1	4.56	Split
BBRC1043	Bombora	Infill - new section	174	6600340	458736	314	-59	270	54	55	1	0.24	Split
├									56	57	1	0.30	Split
									59	60	1	0.34	Split
BBRC1051	Pombers	Infill nouseet	144	6600140	458655	313	-59	270	96 44	100	4	0.25	Composite Composite
BBRC1051	Bombora	Infill - new section	144	0000140	400000	313	-37	270	44 81	48 83	4	0.29	Split
BBRD1053	Bombora	Infill - new section	193.7	6600139	458730	313	-60	268	112	113	1	0.24	Half Core
BBRD1053 BBRD1054	Bombora	Infill - new section	216.8	6600139	458775	313	-60	268	48	52	4	0.30	Composite
BBRC1046	Bombora	Infill - close off	90	6600439	458630	314	-60	269	12	16	4	0.23	Composite
55KC1040	Dombola			0000-07		514	50	2.57	30	32	2	1.35	Split
				ı	including	3			30	31	1	2.31	Split
						1		1	41	50	9	1.37	Split
					including	3			41	42	1	1.47	Split
					and				45	50	5	1.98	Split
					including	, <u> </u>			49	50	1	4.57	Split

	Deposit	Extensional, Infill											
Hole No.	Prospect	or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC0964	Bombora	Infill - close off	30	6601519	458583	312	-60	268	12	16	4	0.52	Composite
BBRC0966	Bombora	Infill - close off	60	6601298	458637	312	-60	269	2	4	2	0.23	Split
									12	16	4	0.30	Composite
BBRC0973	Bombora	Infill - close off	90	6600760	458644	314	-60	270	73	74	1	0.30	Split
BBRC0976	Bombora	Infill - close off	78	6600719	458620	314	-59	271	32	36	4	0.33	Composite
BBRC0977	Bombora	Infill - close off	90	6600719	458640	314	-60	269	28	32	4	0.27	Composite
BBRC0978	Bombora	Infill - close off	102	6600719	458660	314	-60	270	4	8	4	0.61	Composite
									44	56	12	0.33	Composite
BBRC0980	Bombora	Infill - close off	60	6601122	458634	312	-59	270	4	12	8	0.51	Composite
					including				8	12	4	0.80	Composite
BBRC0991	Bombora	Infill - close off	48	6600959	458651	314	-61	270	12	16	4	0.42	Composite
BBRC0992	Bombora	Infill - close off	42	6600920	458649	314	-59	267	20	24	4	0.40	Composite
BBRC0993	Bombora	Infill - close off	42	6600816	458640	314	-59	268	8	12	4	0.48	Composite
BBRC0952	Crescent	Exploratory	60	6604360	458277	311	-60	268	8	16	8	0.40	Composite
				1	including	3		1	12	16	4	0.59	Composite
	<u> </u>		0.4	((0.10.00	450010	211	(0	0/0	20	28	8	0.39	Composite
BBRC0953	Crescent	Exploratory	84	6604360	458318	311	-60	268	8	16	8	0.63	Composite
PPPC0054	Crossent	Evelovelov :	40	4404441	including	í	40	2/0	12	16	4 8	0.84 0.31	Composite
BBRC0954	Crescent	Exploratory	60 84	6604441 6604440	458277 458320	311 311	-60 -60	269 268	40 44	48 48	8 4		Composite
BBRC0955 BBRC0956	Crescent Crescent	Exploratory	84 72	6604440 6604498	458320	311	-60	268	44 29	48 30	1	0.85 0.44	Composite
BBRC0956	Crescent	Exploratory	12	6604496	436237	311	-60	269	36	46	10	2.05	Split
					including	1			36	37	1	13.01	Split Split
					and	1			39	40	1	1.27	Split
					and				42	43	1	2.00	Split
					and				45	46	1	1.02	Split
BBRC0957	Crescent	Exploratory	90	6604498	458298	311	-60	270	44	48	4	0.68	Composite
	0.0000								52	59	7	1.78	Split
					including	3			52	58	6	1.99	Split
					including	3			57	58	1	5.86	Split
BBRC0959	Crescent	Exploratory	90	6604558	458258	311	-60	270	36	44	8	1.07	Split
					including)			36	41	5	1.42	Split
					including	3			36	40	4	1.55	Split
					and				42	44	2	0.65	Split
BBRC0960	Crescent	Exploratory	102	6604558	458278	311	-60	270	40	55	15	0.80	Composite/Split
					including)			49	55	6	1.63	Split
					including	9			51	55	4	2.07	Split
					including	9			54	55	1	4.90	Split
									58	60	2	0.30	Split
									61	62	1	0.28	Split
BBRC0961	Crescent	Exploratory	60	6604640	458200	311	-60	269	15	17	2	0.69	Split
				1	including	3		1	15	16	1	1.01	Split
DBDCCC /C	Creation	Evelender -	0.4	((0.1/20	450000	211	50	070	31	32	1	0.29	Split
BBRC0962	Crescent	Exploratory	84	6604639	458239 including	311	-59	270	16 20	25 25	9 5	1.20	Composite/Split Split
					including				20	23	5 4	1.91 2.22	Split
						9 			20	33	4	2.22	Split
				I	including	 1	!	I	29	33	4	2.18	Split
					including				27	31	2	3.81	Split
					including	·			30	31	1	6.12	Split
BBRC0963	Crescent	Exploratory	108	6604639	458279	311	-60	269	42	43	1	0.73	Split
			. 50						46	50	4	0.75	Split
					including	3		•	48	50	2	1.19	Split
					including				49	50	1	1.80	Split
BBRC1000	Bombora South	Exploratory	150	6599897	459128	312	-61	271	28	32	4	0.52	Composite
						l			44	52	8	0.54	Composite
				•	including	3	•	•	44	48	4	0.61	Composite
BBRC1058	Bombora South	Exploratory	90	6599996	459088	314	-60	272	60	64	4	0.25	Composite
BBRC1062	Bombora South	Exploratory	72	6599759	458939	313	-59	270	48	52	4	0.30	Composite
BBRC1064	Bombora South	Exploratory	72	6599758	459018	314	-60	269	32	36	4	0.22	Composite

Hole No.	Deposit Prospect	Extensional, Infill or Exploratory	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1065	Bombora South	Exploratory	72	6599760	459056	314	-60	269	36	40	4	0.55	Composite
									44	64	20	0.76	Composite
					including	9			48	56	8	1.37	Composite
BBRC1066	Bombora South	Exploratory	72	6599801	459016	313	-60	270	28	36	8	1.29	Composite
					including)			28	32	4	2.35	Composite
BBRC1067	Bombora South	Exploratory	240	6599701	458666	317	-59	91	72	76	4	0.58	Composite
									128	132	4	0.44	Composite
									192	196	4	0.28	Composite
BBRC1071	Bombora South	Exploratory	72	6599658	458981	314	-61	269	28	32	4	0.23	Composite
BBRC1072	Bombora South	Exploratory	72	6599659	459018	313	-60	269	36	40	4	0.57	Composite
BBRC1073	Bombora South	Exploratory	72	6599659	459055	313	-61	269	68	72	4	0.24	Composite
BBRC1074	Bombora South	Exploratory	90	6599499	458918	316	-60	269	32	36	4	0.27	Composite
BBRC1101	Bombora South	Exploratory	72	6599821	459000	312	-61	270	28	32	4	0.35	Composite
BBRC1102	Bombora South	Exploratory	78	6599822	459038	312	-60	268	28	36	8	0.76	Composite
BBRD0407	Bombora South	Exploratory	201.91	6599799	458819	314	-59	272	97	98	1	1.49	Split
									120	121	1	0.33	Half Core
									127	129	2	1.26	Half Core
					including	3			127	128	1	2.27	Half Core
									130	131	1	0.32	Half Core
									139	140	1	0.20	Half Core
									146	153	7	0.95	Half Core
					including	J			148.8	150	1.2	1.43	Half Core
					and				152	153	1	3.22	Half Core

Appendix 1 Notes

- One metre assay results are pending for all composite samples.
- Grades reported above a nominal lower cut-off grade of 0.2g/t Au applied in grade calculation to reflect likely open pit mining scenario. No top assay cut has been used.
- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases and drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.
- Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report.	RC samples were composited at 4m to produce a bulk 3kg sample.
	In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was	Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger,	RC drilling was undertaken using a face- sampling percussion hammer with 5½'' bits.
	Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.

Criteria	JORC Code explanation	Commentary
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage. There is no significant loss of material
		reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
		All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS)

Criteria	JORC Code explanation	Commentary
		and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling.
		Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The infill drilling is being conducted to provide enough data to support estimation of a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or

Criteria	JORC Code explanation	Commentary
		data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.

Criteria	JORC Code explanation	Commentary
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is	Further work is planned as stated in this announcement.