

ASX ANNOUNCEMENT

Strong results extend strike length of Bombora mineralisation to 3.2km

Results to feed into Resource update planned for April/May 2019

Highlights

- Strong drilling results have increased the strike length of the Bombora mineralisation by 700m to 3.2km
- High-grade intersections below the current 1.1Moz# Resource continue to upgrade the gold potential at depth in several areas
- × Extensional drill results include:

Hole No.		Interval @ g/t gold	From
BBDD0083		21m @ 3.11g/t	24
		11m @ 5.21g/t	64
	incl	5m @ 10.53g/t	69
		15.3m @ 1.84g/t	293
	incl	3.2m @ 5.95g/t	298.3
		0.6m @ 211.53g/t	339.7
BBRC1236		8m @ 5.71g/t	52
	incl	4m @ 7.26g/t	56
BBDD0082		13.7m @ 2.3g/t	649
	incl	4.1m @ 6.46g/t	653.9
BBRC1158		12m @ 1.79g/t	96
	incl	4m @ 3.53g/t	103
	incl	1m @ 8.1g/t	104
BBRC1163		7m @ 2.92g/t	120
	incl	4m @ 4.03g/t	121
BBRC1224		12m @ 1.33g/t	104
	incl	3m @ 3.33g/t	109
		15m @ 1.03g/t	121
	incl	2m @ 3.12g/t	122
BBRD0922		3m @ 3.95g/t	272
	incl	1m @ 8.16g/t	272
BBRD0950		11m @ 1.45g/t	430
	incl	5.25m @ 2.66g/t	435
BBRD1110		14m @ 1.51g/t	208
	incl	10m @ 1.85g/t	209

 Drilling continues with four rigs to systematically extend and upgrade the Bombora deposit, and to identify the outer limits of initial open pit mining to trigger finalisation of an open pit Pre-Feasibility Study

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au Website: www.breakerresources.com.au

Breaker Resources NL (ASX: BRB) is pleased to report that drilling has extended the strike length of mineralisation at its Bombora gold discovery by 700m to 3.2km and continued to enhance the underground mining potential.

Bombora, which sits within the Lake Roe Project, 100km east of Kalgoorlie in WA, remains open in all directions. The Company plans to update the existing 1.1Moz[#] Resource in the coming June quarter and will take into account the results from the 700m of strike length which has been added since the Resource was last calculated.

The latest results relate to 14,802m of drilling (87 holes), of which 60% was extensional or exploratory in nature, primarily targeting extensions to the north and south and at depth. The results indicate that the outer limits of the potential open pit mine are likely to increase.

Drilling continues with four rigs to systematically extend and upgrade the Bombora deposit, and to identify the outer limits of initial open pit mining to finalise the open pit Pre-Feasibility Study (**PFS**).

Breaker Executive Chairman Tom Sanders said that after two years of resource drilling, Bombora was still open in every direction and new zones of mineralisation were still being discovered.

"It is increasingly obvious that the initial open pit will be large – and we are yet to find its limits," Mr Sanders said.

"The potential at depth is also becoming more clear. We have drilled only ten holes substantially below the current Resource (250m below surface), four of which include intercepts exceeding 30 gram-metres, and six of which include intercepts exceeding 15 gram-metres.

"This positive "hit rate" at depth, together with our growing understanding of the deposit structure, gives us increasing confidence in the long-term underground mining potential at Bombora."

Photo 1: Typical silica-albite-sulphide Tura Lode mineralisation in BBRD1135 at 246.70m (assays pending). Multiple clusters of fine visible gold are circled in red. Core diameter is 47.6mm.

RC and Diamond Drill Program

The drilling is part of an ongoing program designed to extend and upgrade the 1.1Moz[#] Bombora gold deposit in preparation for an open pit PFS.

Sixty percent of the drilling was extensional or exploratory in nature, primarily targeting extensions to the north and south and at depth. The 14,802m of drilling currently reported consists of 87 drill holes comprising two diamond drill holes (1,306m), 79 reverse circulation (**RC**) drill holes (11,402m) and six RC-precollared diamond drill holes (2,094m).

The drill holes are located in plan view on Figure 1. Further details of the drilling are provided in Appendix 1 and Annexure 1.

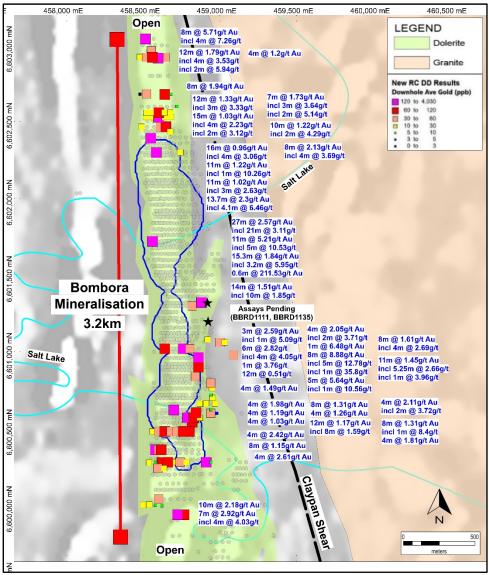


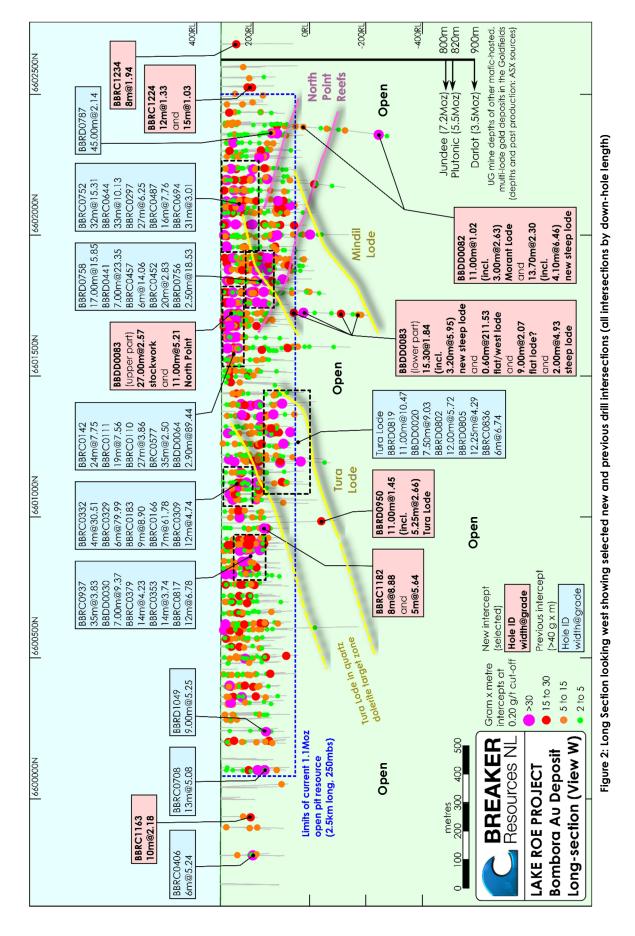
Figure 1: New Bombora RC and diamond drill holes with selected intersections colour-coded by average downhole gold over the entire drill hole on aeromagnetic image with interpreted geology (previous RC and diamond drilling as grey dots; A\$2,000 Whittle open pit shell from ASX Release 18 April 2018 in blue) Note: an average downhole gold grade of 120ppb equates with 12 grams of gold in a 100m drill hole

Results

Sixty nine percent of all drill holes intersected significant gold mineralisation defined above a nominal lower cut-off grade of 0.5g/t Au.

Selected drill hole intersections are shown in plan on Figure 1, in long-section on Figure 2, and are listed in Table 1 below. A full list of all significant results is provided in Appendix 1 which includes many 4m composite sample results for which 1m riffle-split samples are pending.

Hole No.	Prospect	North	Extensional or Infill		Interval @ g/t gold	From	То
BBDD0082	Bombora	6602392	Extensional		16m @ 0.96g/t	226	242
				incl	4m @ 3.06g/t	229	233
					11m @ 1.22g/t	259	270
				incl	1m @ 10.26g/t	268	269
					11m @ 1.02g/t	304	315
				incl	3m @ 2.63g/t	308	311
					13.7m @ 2.3g/t	649	662.7
				incl	4.1m @ 6.46g/t	653.9	658
BBDD0083	Bombora	6601720	Extensional		27m @ 2.57g/t	23	50
				incl	21m @ 3.11g/t	24	45
					11m @ 5.21g/t	64	75
				incl	5m @ 10.53g/t	69	74
					15.3m @ 1.84g/t	293	308.3
				incl	3.2m @ 5.95g/t	298.3	301.5
					0.6m @ 211.53g/t	339.7	340.3
					9m @ 2.07g/t	489	498
				incl	1m @ 3.37g/t	489	490
				and	4m @ 3.06g/t	493	497
				ana	2m @ 4.93g/t	563	565
				incl	1m @ 9.63g/t	563	564
					3m @ 2.01g/t	574	577
				inal			
				incl	2m @ 2.9g/t	575	577
	Davida a un	((0 0 5 4 0	Educional	incl	1m @ 4.47g/t	576	577
BBRC0903	Bombora	6600540	Extensional		8m @ 1.31g/t	92	100
				incl	1m @ 8.4g/t	99	100
DDD01140	Development	((00)(00)	1 - 611		4m @ 1.81g/t	160	164
BBRC1148	Bombora	6600620	Infill		4m @ 1.98g/t	48	52
					4m @ 1.19g/t	56	60
					4m @ 1.03g/t	64	68
BBRC1149	Bombora	6600570	Infill		8m @ 1.31g/t	56	64
					4m @ 1.26g/t	144	148
BBRC1150	Bombora	6600569	Infill		4m @ 2.11g/t	88	92
				incl	2m @ 3.72g/t	88	90
BBRC1152	Bombora	6600602	Infill		12m @ 1.17g/t	124	136
				incl	8m @ 1.59g/t	124	132
BBRC1157	Bombora	6602920	Extensional		4m @ 1.37g/t	44	48
BBRC1158	Bombora	6602915	Extensional		12m @ 1.79g/t	96	108
				incl	4m @ 3.53g/t	103	107
				incl	2m @ 5.94g/t	103	105
				incl	1m @ 8.1g/t	104	105
BBRC1162	Bombora	6599936	Extensional		4m @ 1.85g/t	88	92
BBRC1163	Bombora	6599937	Extensional		10m @ 2.18g/t	118	128
				incl	7m @ 2.92g/t	120	127
				incl	4m @ 4.03g/t	121	125
BBRC1175	Bombora	6600840	Infill		4m @ 1.28g/t	128	132


Table 1: Selected drill results: Bombora gold deposit

Hole No.	Prospect	North	Extensional or Infill		Interval @ g/t gold	From	То
BBRC1179	Bombora	6601020	Infill		3m @ 2.59g/t	57	60
				incl	1m @ 5.09g/t	58	59
					6m @ 2.82g/t	68	74
				incl	4m @ 4.05g/t	68	72
					1m @ 3.76g/t	88	89
					12m @ 0.51g/t	92	104
BBRC1181	Bombora	6600900	Infill		8m @ 1.61g/t	136	144
				incl	4m @ 2.69g/t	140	144
BBRC1182	Bombora	6600963	Infill		4m @ 2.05g/t	157	161
				incl	2m @ 3.71g/t	157	159
				incl	1m @ 6.48g/t	158	159
					8m @ 8.88g/t	174	182
				incl	5m @ 12.78g/t	176	181
				incl	1m @ 35.8g/t	177	178
					5m @ 5.64g/t	186	191
				incl	1m @ 10.56g/t	186	187
BBRC1187	Bombora	6602920	Extensional		4m @ 1.2g/t	56	60
BBRC1221	Bombora	6602467	Extensional		10m @ 1.22g/t	86	96
	bornbord	0002107	Extensional	incl	2m @ 4.29g/t	88	90
BBRC1224	Bombora	6602529	Extensional		12m @ 1.33g/t	104	116
DDRC1224	bornbord	0002027	Extensional	incl	3m @ 3.33g/t	109	112
					15m @ 1.03g/t	107	136
				incl	4m @ 2.23g/t	121	126
				incl	2m @ 3.12g/t	122	120
BBRC1230	Bombora	6602559	Extensional	IIICI	7m @ 1.73g/t	113	124
DDKC1230	BOITIDOIU	0002337	Extensional	incl		113	116
					3m @ 3.64g/t	113	
				incl	2m @ 5.14g/t		116
BBRC1234	Domborg	(/00/70	Extensional	incl	1m @ 9.19g/t	114	115
	Bombora	6602678	Extensional Extensional		8m @ 1.94g/t	60	68
BBRC1236	Bombora	6603040	Extensional		8m @ 5.71g/t	52	60
DDDC1027	Deveele ever	((002/0	1	incl	4m @ 7.26g/t	56	60
BBRC1237	Bombora	6600360	Infil		12m @ 0.5g/t	20	32
BBRC1239	Bombora	6600360	Infil		4m @ 1.23g/t	32	36
BBRC1243	Bombora	6600277	Infil		12m @ 0.68g/t	36	48
DDD01047	D	((00000		incl	4m @ 1.22g/t	44	48
BBRC1247	Bombora	6600280	Extensional		4m @ 2.61g/t	64	68
BBRC1249	Bombora	6600280	Infil		8m @ 1.15g/t	20	28
BBRC1255	Bombora	6600480	Infil		4m @ 1.09g/t	28	32
BBRC1258	Bombora	6600480	Infil		8m @ 0.53g/t	164	172
BBRC1259	Bombora	6600480	Infil		4m @ 2.42g/t	116	120
BBRC1266	Bombora	6602299	Infill		8m @ 2.13g/t	32	40
				incl	4m @ 3.69g/t	32	36
BBRD0922	Bombora	6601061	Extensional		3m @ 3.95g/t	272	275
				incl	1m @ 8.16g/t	272	273
BBRD0950	Bombora	6600979	Extensional		11m @ 1.45g/t	430	441
				incl	5.25m @ 2.66g/t	435	440.25
				incl	1m @ 3.96g/t	437	438
BBRD1110	Bombora	6601321	Extensional		14m @ 1.51g/t	208	222
				incl	10m @ 1.85g/t	209	219

Table 1: Selected drill results: Bombora gold deposit (continued)

Shallow Strike Extensions

RC drilling aimed at shallow strike extensions of the Bombora Deposit has intercepted significant mineralisation both north and south of the current open pit Resource limits (Figure 2). Intercepts include (0.2g/t Au cut-off):

- 10m @ 2.18g/t Au (incl. 4m @ 4.03g/t) from 118m in BBRC1163 (160m south of current Resource)
- × 12m @ 1.79g/t Au (incl. 4m @ 3.53g/t) from 96m in BBRC1158 (420m north of current Resource)
- 8m @ 5.71g/t Au (incl. 4m @ 7.26g/t) from 52m in BBRC1236 (540m north of current Resource)

Together with existing intercepts, these expand the mineralised strike length of the Bombora discovery to at least 3.2km (Figure 2). Infill drilling in these areas is underway or planned.

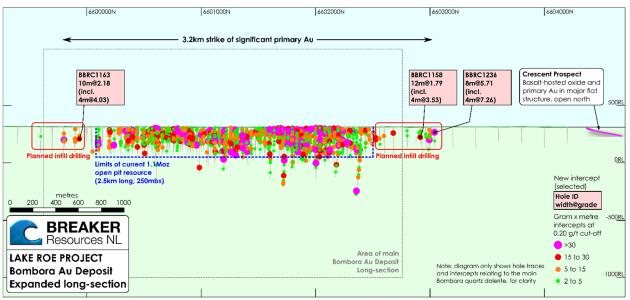


Figure 3: Expanded long section looking west highlighting new strike extensions (main long section shown in Figure 2)

Depth Extensions

Results from five deep diamond drill holes from the Bombora Deposit are reported in this release: BBRD0922, BBRD0950, BBRD0951, BBDD0082 and BBDD0083. The aims and results of these holes are outlined below.

Tura Lode deep holes

BBRD0922, BBRD0950 and BBRD0951 were nominal 80 x 80m step-out holes on the steeply-dipping Tura Lode in the south-central part of the deposit (Figure 4). This lode plunges gently to the south, controlled by the intersection of the lode shear zone with the favourable quartz dolerite host rock. All three holes intercepted the strong Tura Lode structure, with best results of (0.5g/t Au cut-off) 7.00m @ 2.13g/t Au (BBRD0950) and 3.00m @ 3.95g/t Au (BBRD0922). These holes increase the known plunge extent of the lode by 160m to over 600m, and it remains open down-plunge.

Breaker is confident that future infill and extensional drilling on the Tura Lode will identify the highgrade shoots observed in the well-drilled up-plunge portion of the lode. Confidence in the quality of this lode is highlighted by two recent holes, BBRD1135 and BBRD1111 (Appendix 1), which hit significant visual mineralisation (assays pending; Figure 4).

BBRD1135 was an infill hole, which intercepted a 5.27m lode interval (from 245.86m), defined by a shear zone with 1.0-5.0% sulphide mineralisation. Visible gold was observed in laminated veins between 246.66m and 246.99m (50+ specks – see Photo 1), and between 249.56m and 249.78m (four specks). BBRD1111 was an extensional (down-dip) hole, which intercepted a 4.87m lode interval (from 299.37m), defined by a shear zone with 0.2-5.0% sulphide mineralisation. One speck of visible gold was observed in a laminated vein between 302.70m and 303.12m.



Figure 4: Tura Lode pierce-point diagram

Central-North deep holes

BBDD0083 was an east-directed hole (down the quartz dolerite) in the central part of Bombora, primarily aimed at intercepting the down-plunge position of the steeply-dipping, south-plunging Mindil Lode. Numerous significant intercepts, on both known and unknown structures, were recorded through the length of this hole, including (0.2g/t cut-off):

- × 27.00m @ 2.57g/t Au (incl. 21.00m @ 3.11g/t) from 23m (stockwork known)
- 11.00m @ 5.21g/t Au (incl. 5.00m @ 10.53g/t) from 64m (North Point 1 flat reef known)

- 15.30m @ 1.84g/t Au (incl. 3.20m @ 5.95g/t) from 293m (steep lode previously unknown)
- 0.60m @ 211.53g/t Au from 399.7m (west-dipping lode **previously unknown**)
- × 9.00m @ 2.07g/t Au (incl. 4.00m @ 3.06g/t) from 489m (flat lode previously unknown)
- × 2.00m @ 4.93g/t Au (incl. 1.00m @ 9.63g/t) from 563m (steep lode previously unknown)

A wide, sub-vertical shear zone intercepted between 538.00m and 546.00m is interpreted to be the Mindil Lode structure, but it returned low-grade mineralisation in this hole (8.00m @ 0.31g/t Au).

BBDD0082 was an east-directed hole (down the quartz dolerite) at the north end of Bombora, aimed at testing the north-plunging element of the deposit, which is driven in this area by the North Point flat reef array. The expected zone of flat reefs was intercepted, but they were not strongly mineralised in this hole. Several other significant, and previously unknown, mineralised structures were intercepted (0.2g/t Au cut-off):

- 16.00m @ 0.96g/t Au (incl. 4.00m @ 3.06g/t) from 226m (west-dipping lode/stockwork- previously unknown)
- 11.00m @ 1.02g/t Au (incl. 3.00m @ 2.63g/t) from 304m (steep Morant Lode previously unknown)
- 13.70m @ 2.30g/t Au (incl. 4.10m @ 6.46g/t) from 649m (steep lode previously unknown)

Future deep drilling strategy

Depth extensions of the Bombora Deposit are clearly indicated by the limited deeper drilling completed to date. Along the 3.2km strike length of Bombora, **only ten drill holes have significantly tested the quartz dolerite below 250 metres vertical depth** (the vertical extent of the current open pit Resource; Figure 2). Of these holes, four (40%) include intercepts >30 grammetres (below 250m vertical), and six (60%) include intercepts >15 gram-metres (below 250m vertical).

This positive "hit rate" at depth, together with an increasingly robust understanding of the deposit structure, gives Breaker confidence in the long-term underground mining potential of the Bombora Deposit. Once the outer limits of open pit mining are established, Breaker intends to continue with targeted step-out drilling on the major mineralised lodes, with a view to establishing, and growing, an underground resource.

Background

The 3.2km-long Bombora discovery forms part of an 8km-long greenfields gold system concealed by thin transported cover (typically 5-10m) within the 100%-owned Lake Roe Project, located 100km east of Kalgoorlie, WA.

Most of the gold at Bombora is stratabound, occurring preferentially in quartz dolerite in three dominant "stacked" mineralised geometries in a "textbook" structural framework over the entire area which has had detailed drilling. Similar controls and geometries are apparent in many other deposits, including the Golden Mile in Kalgoorlie.

The gold distribution is controlled by multiple, stacked, steep NNW-trending mineralised faults with "linking" flat and/or west-dipping mineralised faults that are also stacked and commonly well

mineralised. Gold occurs in sulphide-rich lodes and in quartz-sulphide stockwork zones situated preferentially in the upper, iron-rich part of a fractionated dolerite.

The sulphide lodes typically contain 2-5% pyrite and pyrrhotite accompanied by extensive silica, albite, biotite and carbonate alteration with varying amounts of (tensional) quartz-sulphide veinlets that can form zones of stockwork mineralisation.

Metallurgical test work indicates gold recoveries in the range of 96% to 99% in oxide and fresh mineralisation and gravity gold of 31% to 90%. The metallurgical testwork also indicates low-cost gold processing based on modest hardness and a relatively coarse grind size of 106-125µm (ASX Release 15 January 2018).

Tom Sanders Executive Chairman Breaker Resources NL

21 March 2019

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource and Exploration Target is based on information announced to the ASX on 6 September 2018. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Classification	Tonnes	Au (g/t)	Ounces
Indicated	12,549,000	1.5	624,000
Inferred	12,050,000	1.2	460,000
Total	24,599,000	1.4	1,084,000

Notes:

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

Appendix 1 Notes (refer Appendix 1 overleaf)

- One metre assay results are pending for all composite samples.
- Grades calculated above a lower cut-off grade of 0.2g/t and reported above a nominal lower cut-off grade of 0.5g/t Au (including composite samples that have scope to generate plus 0.5g/t gold intersections from 1m riffle-split samples) reflecting early open pit mining strategy. No top assay cut has been used.
- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases and drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.
- Further details are provided in Annexure 1.

[•] Reported at 0.5 g/t Au cut-off

APPENDIX 1

Hole No.	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0082	Extensional	692.7	6602392	458549	314	-57	91	14	28	14	0.44	Half Core
								30.63	61	30.37	0.37	Half Core
				including				49	50	1	1.09	Half Core
								66	67	1	2.08	Half Core
								84.77	85.11	0.34	2.05	Half Core
								117	118	1	0.41	Half Core
								124	129	5	0.31	Half Core
								136	137.04	1.04	3.71	Half Core
								181	185	4	0.59	Half Core
				including		-		181	182	1	1.01	Half Core
								196	197	1	0.68	Half Core
						-		226	242	16	0.96	Half Core
			T	including				229	233	4	3.06	Half Core
								245	246	1	1.08	Half Core
								251	253	2	0.79	Half Core
			<u> </u>	including		-		251	252	1	1.14	Half Core
								259	270	11	1.22	Half Core
			T	including			1	268	269	1	10.26	Half Core
				in church				276	283	7	0.51	Half Core
				including				277.1	278	0.9	1.23	Half Core
			1	and				282	283	1	1.90	Half Core
								287	288	1	1.47	Half Core
								296	297	1	1.22	Half Core
								301	302	1	0.35	Half Core
				te al calle a				304	315	11	1.02	Half Core
			,	including				308	311	3	2.63	Half Core Half Core
								329 337	330 346	1 9	0.69	
				including				340	340.5	9	0.72	Half Core Half Core
				including						0.5	1.15 2.33	
			,	and				345	346	1	2.33	Half Core
								352 358	353 360	2	0.88	Half Core Half Core
								367	368	1	0.37	Half Core
								378	379	1	0.44	Half Core
								413	416	3	1.03	Half Core
				including				413	415	1	1.85	Half Core
		}	T	"Incloaing				434	443	9	0.84	Half Core
				including				434	435	,	2.52	Half Core
			-	and				437	438	1	1.65	Half Core
			-	and				442	443	1	2.29	Half Core
								447	450	3	1.25	Half Core
			4	including			1	447	448	1	2.02	Half Core
								463	464	1	1.71	Half Core
								476	479	3	0.41	Half Core
								487	490	3	0.71	Half Core
				including				487	488	1	1.02	Half Core
				Ĭ				495	497	2	0.83	Half Core
				including				495	496	1	1.14	Half Core
								506	523	17	0.51	Half Core
		<u> </u>		including				506	507	1	1.12	Half Core
		<u> </u>						513	514	1	2.60	Half Core
		<u> </u>						522	523	1	1.06	Half Core
								536	537	1	0.51	Half Core
								563	564	1	1.02	Half Core
								649	662.7	13.7	2.30	Half Core
				including				653.9	658	4.1	6.46	Half Core
				and				661.7	662.7	1	3.42	Half Core
								668	668.9	0.9	1.09	Half Core
								671	672	1	0.49	Half Core
								675	675.4	0.4	1.19	Half Core
								679	683	4	0.39	Half Core
									100			
								690	692	2	1.27	Half Core

Hole No.	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0083	Extensional	613.2	6601720	458560	314	-59	87	17	18	1	2.39	Half Core
								23	50	27	2.57	Half Core
				including				24	45	21	3.11	Half Core
								47	48	1	1.96	Half Core
								54	58	4	1.24	Half Core
				including				54	55	1	1.82	Half Core
			1	and			I	56	57	1	2.58	Half Core
								64	75	11	5.21	Half Core
				including				64	66	2	1.83	Half Core
				and				69	74	5 7	10.53	Half Core
				ie elu elie e				79 85	86 86	1	0.38	Half Core Half Core
				including				91	92	1	0.78	Half Core
								96	102	6	0.70	Half Core
				including				96	97	1	1.21	Half Core
				"Inclocaling				107	110	3	0.74	Half Core
				including				109	110	1	1.31	Half Core
								115	117	2	0.30	Half Core
								121	124	3	0.40	Half Core
								139	140	1	0.20	Half Core
								158	159	1	0.22	Half Core
								160	163	3	1.33	Half Core
				including				161	162	1	2.76	Half Core
								170	171	1	0.34	Half Core
								191	192	1	2.81	Half Core
								198	199	1	1.83	Half Core
								222.72	223.8	1.08	0.64	Half Core
								249.8	251	1.2	0.53	Half Core
								293	308.3	15.3	1.84	Half Core
				including			r	296	296.4	0.4	4.82	Half Core
								298.3	301.5	3.2	5.95	Half Core
								305	306	1	1.02	Half Core
								308	308.3	0.3	11.69	Half Core
								339.7 351	340.3 352	0.6	211.53 0.26	Half Core Half Core
								363	365	2	0.28	Half Core
								378	379	1	1.03	Half Core
								386.5	387	0.5	8.20	Half Core
								436	437	1	0.68	Half Core
								452	458	6	0.63	Half Core
								485	486	1	1.43	Half Core
								489	498	9	2.07	Half Core
				including				489	490	1	3.37	Half Core
				and				493	497	4	3.06	Half Core
								517	518	1	0.81	Half Core
								526	527	1	0.66	Half Core
								534	535	1	0.86	Half Core
								556.9	558	1.1	2.80	Half Core
								563	565	2	4.93	Half Core
			1	including			1	563	564	1	9.63	Half Core
								570	571	1	0.68	Half Core
				line li i l'				574	577	3	2.01	Half Core
				including				575	577	2	2.90	Half Core
				including				576	577	1	4.47	Half Core
BBRC0903	Extensional	258.0	6600540	458818	312	-59	266	583 21	584 22	1	0.96 0.39	Half Core Split
JUNC0703	EXIGUISIONUL	200.0	0000040	-10010	JIZ	-07	200	92	100	8	1.31	Composite/Split
			1	including			I	92 99	100	0	8.40	Split
				" ICIOUIIIY				160	164	4	1.81	Composite
						[170	174	4	0.97	Split
			I	in al ralia a			I			1		
				including				170	171		1.62	Split

Hole No.	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1148	Infill	144.0	6600620	458700	312	-60	264	48	52	4	1.98	Composite
								56	60	4	1.19	Composite
								64	68	4	1.03	Composite
BBRC1149	Infill	180.0	6600570	458787	312	-60	267	56	64	8	1.31	Composite
					-			80	84	4	0.42	Composite
								144	148	4	1.26	Composite
								152	156	4	0.28	Composite
BBRC1150	Infill	240.0	6600569	458830	312	-59	270	88	92	4	2.11	Split
				including				88	90	2	3.72	Split
								96	100	4	0.54	Composite
								184	188	4	0.29	Composite
BBRC1151	Extensional	264.0	6600569	458869	312	-60	269	144	148	4	0.52	Composite
								216	220	4	0.28	Composite
BBRC1152	Infill	222.0	6600602	458843	312	-60	270	124	136	12	1.17	Composite
				including			1	124	132	8	1.59	Composite
								188	192	4	0.72	Composite
								220	222	2	0.22	Composite
BBRC1156	Extensional	210.0	6602961	458552	312	-60	86	32	36	4	0.37	Composite
								68	72	4	0.82	Composite
BBRC1157	Extensional	258.0	6602920	458640	313	-61	276	44	48	4	1.37	Composite
								112	116	4	0.63	Composite
				150501			070	160	164	4	0.38	Composite
BBRC1158	Extensional	168.0	6602915	458596	312	-61	270	36	48	12	0.31	Composite
								56	60	4	0.63	Composite
				in al valia a				96	108	12	1.79	Composite/Split
				including				96	100	4	1.53	Composite
				and				103	108	5	2.98	Split
				including				103 103	107	4	3.53	Split
				including including				103	105 105	1	5.94 8.10	Split Split
				Including				124	128	4	0.10	Composite
BBRC1162	Extensional	125.0	6599936	458766	313	-61	88	88	92	4	1.85	Composite
BBRC1163	Extensional	150.0	6599937	458723	313	-61	91	16	20	4	0.31	Composite
DDROTTOO	Exicitorental	100.0	0077707	1007 20	010	01		118	128	10	2.18	Split
				including				118	127	9	2.40	Split
				including				120	127	7	2.92	Split
				including				121	125	4	4.03	Split
BBRC1165	Extensional	186.0	6600660	458967	312	-60	268	112	116	4	0.73	Composite
BBRC1166	Extensional	150.0	6600599	458939	312	-61	268	112	116	4	0.85	Composite
BBRC1168	Extensional	138.0	6600764	458947	312	-60	267	124	128	4	0.35	Composite
BBRC1171	Extensional	150.0	6600660	458869	312	-60	269	60	64	4	0.24	Composite
BBRC1173	Extensional	252.0	6600796	458939	312	-61	270	144	152	8	0.26	Composite
								240	248	8	0.35	Composite
BBRC1175	Infill	234.0	6600840	458840	312	-60	267	128	132	4	1.28	Composite
								152	156	4	0.22	Composite
BBRC1178	Infill	36.0	6601020	458640	312	-60	271	32	36	4	0.27	Composite
BBRC1179	Infill	138.0	6601020	458760	312	-59	273	57	60	3	2.59	Split
				including			1	58	59	1	5.09	Split
								68	74	6	2.82	Composite/Split
				including			r	68	72	4	4.05	Composite
								88	89	1	3.76	Split Composito
			<u> </u>	in olu ella -				92	104	12	0.51	Composite
				including				92	96	4	0.60	Composite
BBDC1100	1	1740	4401000	458804	210	٤ ١	020	100	104	4	0.74	Composite
BBRC1180	Infill	174.0	6601020	430804	312	-61	268	140 164	144 168	4	0.40	Composite Composite
BBRC1181	Infill	234.0	6600900	458860	312	-61	272	96	104	4	0.43	Composite
DUNCTION		204.0	0000700	450000 including		-01	212	96 96	104	0 4	0.84	Composite
				Including				112	116	4	0.88	Composite
<u> </u>								136	144	8	1.61	Composite
				including	I	I	I	140	144	4	2.69	Composite
L	1			" icioung						т	2.07	001100310

Hole No.	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1182	Infill	230.0	6600963	458860	312	-60	267	152	156	4	0.21	Composite
								157	161	4	2.05	Split
				including				157	159	2	3.71	Split
				including				158	159	1	6.48	Split
								174	182	8	8.88	Split
				including				175	181	6	11.37	Split
				including				176	181	5	12.78	Split
				including				177	178	1	35.80	Split
				and				179	180	1 5	11.30	Split
				including				186 186	191 190	э 4	5.64 6.63	Split Split
				including				186	187	1	10.56	Split
				"I CIOUIIIG				204	208	4	0.83	Composite
BBRC1187	Extensional	144.0	6602920	458560	312	-59	235	56	60	4	1.20	Composite
			0002/20	100000	0.2	0,	200	76	80	4	0.31	Composite
BBRC1189	Extensional	84.0	6602680	458520	312	-60	269	40	44	4	0.34	Composite
BBRC1220	Infill	150.0	6602467	458610	315	-59	270	16	20	4	0.22	Composite
								108	112	4	0.36	Composite
BBRC1221	Extensional	192.0	6602467	458647	315	-60	269	86	96	10	1.22	Split/Composite
				including				88	90	2	4.29	Split
				including				88	89	1	5.36	Split
				and				92	96	4	0.61	Composite
BBRC1224	Extensional	150.0	6602529	458599	314	-60	268	104	116	12	1.33	Composite/Split
				including				104	112	8	1.78	Composite/Split
				including				109	112	3	3.33	Split
				including			1	110	111	1	5.90	Split
								121	136	15	1.03	Split/Composite
				including				122	126	4	2.23	Split
				including				122	124	2	3.12	Split
	Extensional	144.0	6602530	458640	315	-60	269	140	144	4	0.26	Composite
BBRC1226	Extensional	216.0	6602530	458680	315	-60	270	192	196	4	0.21	Composite
BBRC1230	Extensional	138.0	6602559	458601	314	-61	270	204	208 120	4	0.39	Composite
BBRC 1250	LATERISIONAL	130.0	0002337	including		-01	270	113 113	116	3	3.64	Split Split
				including				113	116	2	5.14	Split
				including				114	115	1	9.19	Split
BBRC1231	Extensional	184.0	6602560	458636	315	-60	272	168	172	4	0.35	Composite
BBRC1232	Extensional	222.0	6602561	458677	315	-60	271	176	180	4	0.78	Composite
BBRC1234	Extensional	204.0	6602678	458640	314	-60	272	60	68	8	1.94	Composite
					-			136	140	4	0.23	Composite
BBRC1236	Extensional	198.0	6603040	458513	314	-60	91	52	60	8	5.71	Composite
				including				56	60	4	7.26	Composite
								136	140	4	0.26	Composite
BBRC1237	Infill	54.0	6600360	458579	313	-60	271	20	32	12	0.50	Composite
				including				20	28	8	0.62	Composite
BBRC1238	Infill	72.0	6600360	458600	314	-60	271	36	40	4	0.23	Composite
BBRC1239	Infill	90.0	6600360	458617	314	-60	270	28	36	8	0.72	Composite
				including	1			32	36	4	1.23	Composite
BBRC1241	Infill	48.0	6600277	458537	314	-60	271	32	36	4	0.26	Composite
BBRC1243	Infill	102.0	6600277	458622	315	-60	272	36	48	12	0.68	Composite
				including				40	48	8	0.89	Composite
BBDC 1045	للتقصل	100.0	4400000	including	I	40	071	44	48	4	1.22	Composite
BBRC1245	Infill	192.0	6600280	458740	314	-60	271	36 52	40 56	4	0.85 0.35	Composite
								128	132	4	0.35	Composite Composite
								128	132	4	0.25	Composite
BBRC1247	Extensional	72.0	6600280	458910	315	-61	271	56	60	4	0.28	Composite
55NG 124/	Exicitational	12.0	0000200		515	-01	2/1	64	68	4	2.61	Composite
BBRC1249	Infill	132.0	6600280	458660	314	-60	273	20	28	8	1.15	Composite
				458595	315	-60	269	20	20	4	0.28	Composite
BBRC1250	Infill	90.0	0000240					. ~~	- ·	· ·	2.20	
BBRC1250	Infill	90.0	6600240	100070				28	32	4	0.28	Composite
BBRC1250 BBRC1254	Infill Infill	60.0	6600480	458600	315	-60	273	28 16	32 20	4	0.28 0.27	Composite Composite

Hole No.	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1256	Infill	120.0	6600480	458680	316	-60	271	52	56	4	0.20	Composite
								72	73	1	0.66	Split
BBRC1257	Infill	177.0	6600480	458720	316	-59	271	12	16	4	0.24	Composite
								84	88	4	0.21	Composite
BBRC1258	Infill	240.0	6600480	458760	316	-60	272	32	36	4	0.54	Composite
								56	60	4	0.25	Composite
								112	116	4	0.30	Composite
								120	128	8	0.24	Composite
								140	144	4	0.41	Composite
								156	160	4	0.40	Composite
								164	172	8	0.53	Composite
				including		r		168	172	4	0.59	Composite
BBRC1259	Infill	234.0	6600480	458800	315	-59	272	60	64	4	0.20	Composite
								116	120	4	2.42	Composite
								140	144	4	0.26	Composite
BBRC1265	Infill	252.0	6602301	458741	314	-60	274	188	192	4	0.75	Composite
BBRC1266	Infill	123.0	6602299	458584	313	-60	274	12	16	4	0.25	Composite
								32	40	8	2.13	Composite
			,	including				32	36	4	3.69	Composite
								64	68	4	0.29	Composite
BBRC1268	Infill	210.0	6602435	458675	315	-60	272	160	164	4	0.79	Composite
BBRD0593	Infill	216.8	6601298	458819	313	-61	268	155	160.3	5.3	0.64	Half Core
				including				156.3	160.3	4	0.75	Half Core
								158	159	1	1.05	Half Core
								179	180	1	0.37	Half Core
								182	183	1	0.57	Half Core
								203	204	1	2.25	Half Core
BBRD0886	Extensional	316.9	6601080	458919	312	-62	270	58	61	3	0.49	Split
				including				59	61	2	0.58	Split
								181	187	6	0.77	Half Core
				including				182	186	4	0.98	Half Core
				including				182	183	1	1.52	Half Core
				and			1	185	186	1	1.24	Half Core
								245	246	1	0.86	Half Core
BBRD0922	Extensional	387.5	6601061	459000	312	-61	268	272	275	3	3.95	Half Core
			1	including			1	272	273	1	8.16	Half Core
								338	339	1	0.80	Half Core
BBRD0950	Extensional	496.4	6600979	459089	312	-60	269	143	144	1	1.86	Half Core
								430	441	11	1.45	Half Core
				including				430	431	1	0.51	Half Core
				and				434	441	7	2.13	Half Core
				including				435	440.25	5.25	2.66	Half Core
				and		= 0		437	438	1	3.96	Half Core
BBRD0951	Extensional	417.3	6601062	459031	312	-59	271	346	349.11	3.11	0.28	Half Core
								357	358	1	0.21	Half Core
				ta al 11				359	361	2	0.58	Half Core
DDDD1110	Ende action of	050.0	((01001	including	210	10	0.40	360	361	1	0.92	Half Core
BBRD1110	Extensional	258.8	6601321	458878	312	-60	269	17	21	4	0.76	Split
				including				18	20	2	1.19	Split
				including				19	20	1	1.56	Split
				. این ام و		1		161.2	164	2.8	0.73	Half Core
				including				161.2	162.3	1.1	1.37	Half Core
				and				163	164	1	0.51	Half Core
				المرام وال	1	1		208	222	14	1.51	Half Core
				including				209	222	13	1.59	Half Core
				including				209	219	10	1.85	Half Core
				and				220	221	1	1.17	Half Core
				land off				228.88	232	3.12	0.46	Half Core
				including				231	232	1	0.74	Half Core
								239	241	2	1.42	Half Core
00001111	Endo and a set			including	<i>a</i> -	10	c=	240	241	1	2.42	Half Core
BBRD1111	Extensional	321.8	6601321	458918	312	-60	270					Assays Pending
BBRD1135	Extensional	316	6601199	458922	312	-60	272					Assays Pending

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report.	RC samples were composited at 4m to produce a bulk 3kg sample.
	In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was	Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger,	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
	Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.

Criteria	JORC Code explanation	Commentary
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	marenai.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
		Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS)

Criteria	JORC Code explanation	Commentary
		and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling.
		Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The infill drilling is being conducted to provide enough data to support estimation of a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or

Criteria	JORC Code explanation	Commentary
		data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.

Criteria	JORC Code explanation	Commentary
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades calculated above a lower cut-off grade of 0.2g/t Au and reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All holes are located on Figure 1. Grades calculated above a lower cut-off grade of 0.2g/t Au and reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	