

ASX ANNOUNCEMENT

High-grade results extend 1.1Moz[#] Bombora deposit at depth and along strike

Resource update on track for late this month; Modelling has confirmed continuity of mineralisation over 3km strike length

Highlights

 High-grade drill results from reconnaissance drilling continue to extend the 1.1Moz[#] Bombora gold deposit at depth and along strike to the south. Results include:

Hole No.	Prospect	Extensional or Infill		Interval @ g/t gold	From	То
BBDD0086	Daisy Lode	Extensional		9.17m @ 7.17g/t	491.83	502
			incl.	6.1m @ 10.54g/t	491.83	498
			incl.	1.48m @ 42.02g/t	496	497.48
			incl.	0.63m @ 94.70g/t	496.85	497.48
BBRC1423	Bombora South	Extensional		19m @ 4.30g/t	169	188
			incl.	6m @ 12.47g/t	173	179
			incl.	3m @ 21.16g/t	174	177
BBRC1410	Bombora South	Extensional		3m @ 4.00g/t	123	126
			incl.	2m @ 5.76g/t	123	125
BBRC1420	Bombora South	Extensional		3m @ 4.32g/t	172	175
			incl.	1m @ 12.28g/t	172	173

- Fresh rock intercepts up to 3.46g/t gold from step-out drilling 3km north of Bombora at Claypan Shear North Prospect, underscoring camp-scale upside at Lake Roe
- Resource update on track for late July 2019; Modelling has confirmed continuity and regularity of mineralisation over 3km strike length
- PFS targeting high-margin open pit over 2km-long and up to 250m deep is well-advanced with completion scheduled for late September 2019
- Exploratory drilling has resumed and will transition into an extended phase of reverse circulation and diamond drilling, targeting resource growth and further discovery, over the next 2-3 months

Breaker Resources NL (ASX: BRB) is pleased to report more high-grade drilling results which further extend the known mineralisation along strike and at depth at the Company's 1.1Moz[#] Bombora gold deposit near Kalgoorlie in WA.

The latest drilling has also returned fresh rock intercepts of up to 3.46g/t Au from step-out drilling 3km north of Bombora at the Claypan Shear North Prospect. Primary (bedrock) gold mineralisation has now been confirmed over 6km, underscoring the camp-scale upside at Lake Roe.

The latest results will form part of the impending Resource update, which is on track for release later this month. This new Resource estimate will in turn underpin the Lake Roe Pre-feasibility Study (**PFS**), which is scheduled for release in late September 2019.

The recent reconnaissance drilling returned results of up to 94.7g/t Au at depths of ~430m below surface (BBDD0086), 19m @ 4.30g/t Au at the southern extremity of the Bombora deposit (BBRC1423) and up to 3.46g/t Au at the previously undrilled Claypan Shear North Prospect (BBRC1322).

The latest drill results relate to 8,432m of reverse circulation (**RC**) and diamond drilling (67 holes), the final component of a three-year phase of continuous drilling involving up to four drill rigs.

This program was put on hold to allow time for detailed interpretation and modelling in preparation for the upcoming Resource update and for drill planning purposes. Exploratory aircore drilling resumed in mid-June and will transition into another extended phase of RC and diamond drilling targeting further growth and discovery over the next two to three months.

Breaker Executive Chairman Tom Sanders said that the Bombora gold deposit is open in all directions after 226,000m of RC and diamond drilling.

"This is exciting and unusual and reflects a rare, major greenfields discovery with a repetitive cycle of discovery and resource delineation drilling, followed by successful step-out drilling and more delineation drilling," Mr Sanders said.

"The building blocks are now in place for a successful and low-risk new gold development that is the subject of a PFS. And this is just the start.

"While our drilling to date at Bombora has focused mainly on building the critical mass for a large, high-margin open pit operation, the ongoing success of our extensional drilling has already established the case for continued resource drilling, and this is what we plan to implement over the coming months, both at depth and immediately along strike from Bombora (outside the known Resource).

"The ongoing success of the exploratory drilling outside Bombora adds another dimension to the growth possibilities and reinforces our view of the camp-scale growth potential of the Lake Roe project.

"As a result, while we wrap up the Resource update and finalise the PFS, we will shift back into drilling mode with an early focus on further discovery, high-impact conceptual drill holes to create new work areas, as well as sterilisation drilling where required for mine planning purposes."

RC and Diamond Drill Program

A total of 8,432m of drilling was completed in three areas:

- × 2,907m of infill and extensional diamond drilling at the **Bombora gold deposit** (Figure 1);
- 3,048m of extensional RC drilling in the southern part of the Bombora deposit, including the Bombora South Prospect (Figures 1 and 2); and
- 2,477m of exploratory RC drilling (36 holes) at the **Claypan Shear North Prospect** 3km north of the Bombora gold deposit (Figure 2).

Further details of the drilling are provided in Appendix 1 and Annexure 1.

Figure 1: New Bombora RC and diamond drill holes with selected intersections colour-coded by average downhole gold over the entire drill hole on aeromagnetic image with interpreted geology (previous RC and diamond drilling as grey dots; A\$2,000 Whittle open pit shell from ASX Release 18 April 2018 in blue) Note: an average downhole gold grade of 120ppb equates with 12 grams of gold in a 100m drill hole

Figure 2: End-of-hole gold and tellurium data from Breaker aircore drilling and the recently completed shallow RC (BBRC1317-1353). The anomalism in both elements is comparable to that which defines known primary mineralisation at both Bombora and Crescent.

Results and Analysis by Area

Bombora and Bombora South

Selected drill hole intersections from Bombora and Bombora South are shown in Table 1 below, in plan in Figures 1 and 2, and in long-section in Figure 3. A full list of significant results is provided in Appendix 1.

High-grade gold mineralisation was intersected at depth (BBDD0086) and in several areas of extensional drilling, mainly in the central and southern parts of the Bombora deposit (Figure 1).

Hole No.	Northing	Extensional or Infill		From	То	Interval @ g/t gold
BBDD0073	6601761	Infill		66	73	7m @ 6.57g/t
			incl.	67	72	5m @ 9.01g/t
			incl.	68	70	2m @ 19.74g/t
BBDD0086	6600825	Extensional		100	102	2m @ 3.72g/t
			incl.	101	102	1m @ 4.63g/t
				122	129	7m @ 1.05g/t
			incl.	122	128	6m @ 1.15g/t
			incl.	127	128	1m @ 3.86g/t
				307	308	1m @ 9.25g/t
				341	341.3	0.3m @ 1.16g/t
				372.33	376.58	4.25m @ 2.18g/t
			incl.	372.33	375	2.67m @ 2.94g/t
			incl.	373	375	2m @ 3.58g/t
				491.83	502	9.17m @ 7.17g/t
			incl.	491.83	498	6.1m@10.54g/t
			incl.	496	497.48	1.48m @ 42.02g/t
				496.85	497.48	0.63m @ 94.7a/t

Table 1: Selected drill results: Bombora gold deposit

Hole No.	Northing	Extensional or Infill		From	То	Interval @ g/t gold
BBRC1410	6599816	Extensional		123	126	3m @ 4.00g/t
			incl.	123	125	2m @ 5.76g/t
BBRC1411	6599822	Extensional		85	86	1m @ 6.31g/t
BBRC1413	6599760	Extensional		37	47	10m @ 1.2g/t
			incl.	37	45	8m @ 1.37g/t
BBRC1417	6599701	Extensional		43	45	2m @ 2.44g/t
			incl.	44	45	1m @ 3.12g/t
				65	67	2m @ 1.45g/t
			incl.	65	66	1m @ 2.61g/t
BBRC1420	6599999	Extensional		172	175	3m @ 4.32g/t
			incl.	172	173	1m @ 12.28g/t
BBRC1423	6600067	Extensional		169	188	19m @ 4.30g/t
				173	179	6m @ 12.47g/t
			incl.	174	177	3m @ 21.16g/t
BBRD0260*	6600297	Infill		12	22	10m @ 1.46g/t
			incl.	12	16	4m @ 3.18g/t
			incl.	12	14	2m @ 5.55g/t
			incl.	12	13	1m @ 9.31g/t
BBRD0261	6600297	Infill		177	185.1	8.1m @ 1.16g/t
			incl.	177	179	2m @ 1.93g/t
			and	182	184	2m @ 2.31g/t
			incl.	183	184	1m @ 3.53g/t
BBRD0324 [#]	6601220	Infill		61	64	3m @ 2.02g/t
			incl.	61	63	2m @ 2.63g/t
BBRD1123	6600922	Infill		113	137	24m @ 1.2g/t
			incl.	113	123	10m @ 1.48g/t
			incl.	116	121	5m @ 2.35g/t
			incl.	118	119	1m @ 5.22g/t
				135	137	2m @ 3.54g/t
			incl.	136	137	1m @ 4.91g/t
BBRD1155	6601021	Extensional		118	120	2m @ 2.94g/t
			incl.	118	119	1m @ 5.46g/t
				149	158	9m @ 1.31g/t
			incl.	149	157.5	8.5m @ 1.37g/t
			incl.	149.5	152	2.5m @ 3.23g/t
			incl.	151	152	1m@ 5.38g/t

Table 1 (continued): Selected drill results: Bombora gold deposit

BBDD0086

Diamond drill hole, BBDD0086, was a deep east-directed hole drilled in the central south of the Bombora Deposit, primarily intended as a 160m plunge step-out on the Tura Lode. The context and visual results from the hole were described in the Company's ASX Release of 6 May 2019.

The visually strong Tura Lode interval in BBDD0086 returned an intercept of 4.25m @ 2.18g/t Au from 372.33m (0.20g/t cut-off), which was lower grade than anticipated. Nevertheless, Breaker is encouraged by the width and continuity of the mineralised lode structure, which has now been confirmed over 800m of plunge extent and remains open.

BBDD0086 was continued past the Tura Lode, and intercepted a new, subvertical lode with abundant visible gold – now named the **Daisy Lode**. This lode returned an intercept of 9.17m @ 7.17g/t Au from 491.83m (0.20g/t cut-off), including **0.63m @ 94.70g/t** from 496.85m. The Daisy Lode structure is located ~50m east of, and parallel to, the Tura Lode. Deep diamond holes 160m and 240m north of BBDD0086 (BBRD0950 and BBRD0951, respectively) have intersected the same structure, but in the less favourable hangingwall dolerite. The high-grade BBDD0086 intercept represents the **first intercept of the Daisy Lode structure inside the favourable quartz dolerite lithology** and planned future deep drilling will target this zone.

Photo 1: BBDD0086 at 497.1m showing visible gold and assaying 94.7g/t Au

Southern Land RC

Land RC drilling at the southern end of the Bombora Deposit returned significant extensional results, including BBRC1423 with 19m @ 4.30g/t Au from 168m (0.20g/t cut-off), including 3m @ 21.16g/t. This intercept is likely related to previously reported significant intercepts in BBRC0708, 30m to the north (21m @ 1.83g/t from 141m, and 13m @ 5.08g/t from 174m; ASX Release 10 January 2018). The strong mineralisation in this area is interpreted to occur around the intersections of steep and west-dipping lode structures, and is a clear target for further drilling.

Claypan Shear Zone North Shallow RC Drilling

Significant oxide and primary gold mineralisation up to 3.46g/t Au was encountered in step-out exploratory drilling at the Claypan Shear North Prospect, situated 3km north of Bombora.

The shallow, wide-spaced (400 x 80m) exploratory RC drilling targeted the previously untested northern extensions of the Claypan Shear Zone (**CSZ**), the first-order fluid pathway controlling mineralisation at Bombora and Crescent. The reconnaissance RC drilling was designed to penetrate a nominal 10m into fresh rock.

The highlight from the program is BBRC1322, on the northernmost line. This hole returned **fresh rock** intercepts (0.20g/t cut-off) of 2m @ 1.89g/t Au from 44m (including 1m @ 3.46g/t from 44m), and 2m @ 0.82g/t Au from 55m to end-of-hole (**EOH**) (including 1m @ 1.33g/t from 56m to EOH). Both intercepts are associated with shearing, biotite-albite-sulphide alteration and quartz veining, similar to that observed at Bombora and Crescent.

The elevated gold results are supported by strong multi-element anomalism, including in tellurium, a key pathfinder element for the mineralised "cells" at Bombora and Crescent. The results are in a similar setting, and of comparable tenor, to the aircore results that identified the Bombora and Crescent primary mineralisation (Figure 2).

A full list of significant results is provided in Appendix 1. This includes newly received assay results from 1m sample splits that supersede the preliminary, partial results reported in the March 2019 Quarterly Report (ASX Release 30 April 2019). The drilling strategy and target details are described in the March 2019 Quarterly Report.

Breaker is encouraged by the results which extend the known strike length of primary (bedrock) gold mineralisation >1g/t to over 6km, underlining the camp-scale growth potential of the Lake Roe project. Follow-up drilling is planned in the September quarter.

EIS Co-Funded Drilling Grant

Breaker is pleased to advise that it has been granted up to \$150,000 in drilling costs, as part of the Department of Mines, Industry Regulation and Safety (**DMIRS**) Exploration Incentive Scheme (**EIS**) co-funded drilling program.

The proposed EIS drill hole is a single deep (~1,200m) diamond drill hole at the southern end of the 1.1Moz[#] Bombora deposit. The drill hole, planned for late in the September 2019 quarter, will test an estimated ~600m true thickness quartz dolerite package, and will extend into the poorly-tested footwall sequence. The main mineralisation target is the intersection of the Tura Lode structure (major fluid pathway) with quartz dolerite (favourable host rock) that is structurally thickened by faulting (Figure 4).

The EIS is a co-funding initiative for exploration in under-explored areas of Western Australia and awarded on a dollar-for-dollar basis for direct drilling costs. The program is designed to encourage innovative exploration and prioritised high quality, technically sound proposals that demonstrate new exploration concepts.

Figure 4: Schematic section showing planned 1,200m diamond drill hole

Background

The 3.2km-long Bombora discovery forms part of an 8km-long greenfields gold system concealed by thin transported cover (typically 5-10m) within the 100%-owned Lake Roe Project, located 100km east of Kalgoorlie, WA.

Most of the gold at Bombora is stratabound, occurring preferentially in quartz dolerite in three dominant, typically "stacked" mineralised geometries in a regular structural framework over the entire area which has had detailed drilling. Similar controls and geometries are apparent in many other deposits, including the Golden Mile in Kalgoorlie.

The gold distribution is controlled by multiple, stacked, steep NNW-trending mineralised faults with "linking" flat and/or west-dipping mineralised faults that are also stacked and commonly well mineralised. Gold occurs in sulphide-rich lodes and in quartz-sulphide stockwork zones situated preferentially in the upper, iron-rich part of a fractionated dolerite.

The sulphide lodes typically contain 2-5% pyrite and pyrrhotite accompanied by extensive silica, albite, biotite and carbonate alteration with varying amounts of (tensional) quartz-sulphide veinlets that can form zones of stockwork mineralisation.

Tom Sanders Executive Chairman Breaker Resources NL

12 July 2019

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

<u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource and Exploration Target is based on information announced to the ASX on 6 September 2018. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Classification	Tonnes	Au (g/t)	Ounces
Indicated	12,549,000	1.5	624,000
Inferred	12,050,000	1.2	460,000
Total	24,599,000	1.4	1,084,000

Notes:

Reported at 0.50g/t Au cut-off

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1

Hole No.	Deposit Prospect	Extensional or	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0072	Bombora	Infill	126.6	6602437	458587	314	-60	269	55.5	60	4.5	0.92	Half Core
			including				55.5	56.5	1	2.02	Half Core		
					and	-	1		59	60	1	1.81	Half Core
									65.4	67	1.6	2.66	Half Core
			110.1	((0)7()	450/05	010	50	070	65.4	66.4	1	4.00	Half Core
BBDD0073	Bombora	Infill	119.1	6601761	458625	313	-59	2/0	19	20	1	2.09	Half Core
									51	51	2	0.46	Half Core
									58	63	5	0.42	Half Core
				1	including			1	61.5	62.1	0.6	1.22	Half Core
									66	73	7	6.57	Half Core
					including				67	72	5	9.01	Half Core
					including				68	70	2	19.74	Half Core
BBDD0075	Bombora	Infill	282.1	6600902	458882	312	-60	268	25	27	2	1.05	Half Core
				r	including	-	-		26	27	1	1.49	Half Core
									30	31	1	1.53	Half Core
									30	37	7	0.68	Half Core
									108	117	9	0.43	Half Core
									214.5	215.1	0.6	0.23	Half Core
BBDD0086	Bombora	Extensional	690.7	6600825	458690	312	-59	88	58	61	3	0.55	Half Core
					including		1		60	61	1	1.22	Half Core
									69	70	1	0.73	Half Core
									81	84.5	3.5	0.59	Half Core
					including	<u> </u>	r	r –	83.4	84.5	1.1	1.40	Half Core
									90	91	1	0.46	Half Core
					includina				95	96	1	3.02	Half Core
					licioalig	Γ			100	102	2	3.72	Half Core
					including		1		101	102	1	4.63	Half Core
									107	113	6	0.51	Half Core
					including				107	108	1	0.55	Half Core
				r	and	1	1	1	112	113	1	1.95	Half Core
					in oludin a				122	129	/	1.05	Halt Core
					including				122	128	6	3.86	Half Core
				r – –	lincidaling	1			139	140	1	0.59	Half Core
									156	158	2	0.68	Half Core
									183	184	1	0.66	Half Core
									277	278	1	1.24	Half Core
									307	308	1	9.25	Half Core
									341	341.3	0.3	1.16	Half Core
					including				3/2.33	3/6.58	4.25	2.18	Half Core
					including				372.33	375	2.6/	2.74	Half Core
		1	-		and				376	376.58	0.58	1.13	Half Core
					_				491.83	502	9.17	7.17	Half Core
				- <u> </u>	including			·	491.83	498	6.1	10.54	Half Core
					including				496	497.48	1.48	42.02	Half Core
					including	-		r –	496.85	497.48	0.63	94.7	Half Core
	Damat	1	100.7	//00007	4507/0	01.4		071	508	509	1	2.36	Half Core
BBKD0260*	Bombora		198./	6600297	438/69	314	-60	2/1	12	14	10	1.46 3.19	Split*
					including				12	10	4	5.10	Split*
		1	including				12	13	1	9.31	Split*		
						L	146.7	147	0.3	0.79	Half Core		
BBRD0261*	Bombora	Infill	237.8	6600297	458810	314	-60	270	16	18	2	0.74	Split*
			including				16	17	1	1.06	Split*		
						<u> </u>			55	56	1	0.72	Split*
					la a h s P				177	185.1	8.1	1.16	Half Core
		+			and				1//	1/9	2	1.93	Half Core
					including				182	184	<u> </u>	2.31	Half Core
		1	I						100	104	1	0.00	

APPENDIX 1 (continued)

Hole No.	Deposit Prospect	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0324 [#]	Bombora	Infill	279.7	6601220	458659	312	-58	93	26	28	2	0.54	Split [#]
					including				27	28	1	0.69	Split [#]
									61	64	3	2.02	Split [#]
					including				61	63	2	2.63	Split [#]
									147	148	1	0.93	Split [#]
									158	159	1	5.17	Half Core
									176	178	2	0.49	Half Core
				1	including	<u> </u>	1	r	176	177	1	0.69	Half Core
						-			188	189		0.43	Half Core
BBBD0021	Bomborg	Extonsional	276.7	6600697	458909	312	-61	270	123	124	2	1.09	Half Core
BBRD0731	Bollibola	LAIensionai	2/0./	0000077	430707	512	-01	2/0	177.89	179	1 11	1.07	Half Core
BBRD1123 ^{##}	Bomborg	Infill	282.8	6600922	458888	312	- 59	270	15	27	12	0.38	Split
	Definitiona		202.0	0000722	includina	012	07	2/0	15	16	1	0.61	Split
					and				17	18	1	0.61	Split
					and				19	20	1	0.78	Split
				-	and				24	26	2	0.70	Split
									113	137	24	1.20	Split
					including				113	123	10	1.48	Split
					including				116	121	5	2.35	Split
					including				118	119		5.22	Split
					including				135	137	2 1	3.54	spili Split
BBRD1155	Bomborg	Extensional	229.2	6601021	458863	312	-60	270	118	120	2	2.94	Half Core
DERETTOS	bollibold	Exicitational	227.2	0001021	includina	012	00	2/0	118	119	1	5.46	Half Core
									149	158	9	1.31	Half Core
			including				149	157.5	8.5	1.37	Half Core		
					including				149.5	152	2.5	3.23	Half Core
			including				151	152	1	5.38	Half Core		
									172.5	173.5	1	2.32	Half Core
BBRC1409	Bombora South	Extensional	132.0	6599823	458741	316	-60	89	25	28	3	0.72	Split
					inciuaing	1	1	r	2/	28	1	1.38	Split
					includina				92	70 94	4	2.14	Split
BBRC1410	Bombora South	Extensional	162.0	6599816	458703	317	-60	88	58	60	2	2.14	Split
DERCITIO	Donibola Coolin	Extensional	10210	0077010	including	017	00	00	58	59	1	3.02	Split
					Ŭ				66	67	1	1.26	Split
									89	91	2	0.91	Split
					including				89	90	1	1.36	Split
									117	120	3	0.91	Split
				1	including	1	1	r	118	119	1	1.34	Split
					in oludin a				123	126	3	4.00	Split
BBRC1411	Bomborg South	Extensional	192.0	6599822	458662	314	-60	83	77	79	2	0.23	spili Split
DDRCITI	Bollibold Soom	Extensional	172.0	0077022	includina	010	00	00	78	79	1	1.04	Split
									85	86	1	6.31	Split
						1			89	92	3	0.53	Split
BBRC1412	Bombora South	Extensional	180.0	6599799	458647	316	-60	89	15	30	15	0.25	Split
									105	108	3	1.11	Split
					including	1	1		105	107	2	1.48	Split
									161	163	2	1.15	Split
DDDC1410	Pombors Coult	Extensions	70.0	45007/0	Including	214	10	070	161	162	10	2.06	Split
DDKC1413	BOLLIDOLA 20010	extensional	72.0	0377/60	437038	314	-60	2/3	37	4/	8	1.20	Split
BBRC1414	Bomborg South	Extensional	120.0	6599761	459077	314	-60	273	35	38	3	1.3/	Split
20001414	20110010 300111	Exictisional	120.0	1 0077701	includina		50	2/0	35	37	2	1.63	Split
					g				62	68	6	0.47	Split
BBRC1415	Bombora South	Extensional	72.0	6599760	459117	313	-61	273	46	53	7	0.53	Split
									51	52	1	1.06	Split

APPENDIX 1 (continued)

Hole No.	Deposit Prospect	Extensional or Infill	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1417	Bombora South	Extensional	90.0	6599701	459058	314	-60	273	43	47	4	1.49	Split
			including				43	45	2	2.44	Split		
			including			44	45	1	3.12	Split			
									65	67	2	1.45	Split
					including				65	66	1	2.61	Split
									74	77	3	0.51	Split
					including				74	75	1	1.07	Split
BBRC1420	Bombora South	Extensional	260.0	6599999	458819	315	-60	269	172	175	3	4.32	Split
					including		-		172	173	1	12.28	Split
BBRC1422	Bombora South	Extensional	220.0	6600067	458765	314	-60	266	161	162	1	0.24	Split
BBRC1423	Bombora South	Extensional	270.0	6600067	458810	313	-60	271	169	188	19	4.30	Split
			including				169	170	1	1.87	Split		
									173	179	6	12.47	Split
					including				174	177	3	21.16	Split
BBRC1426	Bombora South	Extensional	114.0	6600068	458605	313	-60	272	18	23	5	0.37	Split
									28	30	2	0.24	Split
BBRC1427	Bombora South	Extensional	162.0	6600067	458649	313	-60	272	53	54	1	0.63	Split
BBRC1318**	Claypan North	Exploratory	48.0	6605240	457720	311	-60	271	7	9	2	0.55	Split
									29	30	1	0.27	Split
BBRC1322**	Claypan North	Exploratory	57.0	6605660	457880	311	-60	270	44	46	2	1.89	Split
					including		-		44	45	1	3.46	Split
									55	57	2	0.82	Split
					including				56	57	1	1.33	Split
BBRC1325**	Claypan North	Exploratory	50.0	6605240	457880	311	-59	270	4	5	1	0.23	Split
BBRC1330**	Claypan North	Exploratory	71.0	6605240	458280	312	-60	272	63	64	1	0.35	Split
BBRC1350	Claypan North	Exploratory	60.0	6605662	458116	311	-60	270	35	36	1	0.22	Split
									48	50	2	0.30	Split
BBRC1352	Claypan North	Exploratory	80.0	6605660	458277	311	-61	271	31	32	1	0.23	Split
BBRC1353	Claypan North	Exploratory	78.0	6605660	458356	311	-59	270	34	35	1	0.27	Split
									37	38	1	0.28	Split

* Four metre composite results reported for RC pre-collar in ASX Release 27 March 2017

Four metre composite results reported for RC pre-collar in ASX Release 30 May 2017

** Four metre composite results reported in ASX Release 30 April 2019

Four metre composite results reported for RC pre-collar in ASX Release 31 January 2019

Appendix 1 Notes

- Significant mineralisation at Bombora and Bombora South calculated above a lower cut-off grade of 0.20g/t Au and reported above a nominal lower cut-off grade of 0.50g/t Au. No top assay cut has been used.
- Significant mineralisation at Claypan North calculated above a lower cut-off grade of 0.20g/t Au and reported above a nominal lower cut-off grade of 0.20g/t Au. No top assay cut has been used.
- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases, and drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.
- Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.

Criteria	JORC Code explanation	Commentary
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples. Diamond core sample intervals are
		based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.

Criteria	JORC Code explanation	Commentary					
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.					
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.					
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.					
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.					
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.					
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.					
	The use of twinned holes.	n/a					
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.					
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.					
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS)					

Criteria	JORC Code explanation	Commentary			
		and +/- 0.1m or less for surveyed and LIDAR elevation point data.			
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.			
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.			
	Quality and adequacy of topographic control.	As detailed above.			
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling.			
		Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.			
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The infill drilling is being conducted to provide enough data to support estimation of a Mineral Resource.			
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.			
		No sample compositing has been applied to diamond drill core.			
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).			
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.			
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.			
		a Company facility for future reference if required.			
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or			

Criteria	JORC Code explanation	Commentary
		data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB.
		associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.

Criteria	JORC Code explanation	Commentary
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades calculated above a lower cut-off grade of 0.2g/t Au and reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All holes are located on Figure 1. Grades calculated above a lower cut-off grade of 0.20g/t Au and reported above a nominal lower cut-off grade of 0.50g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future	Further work is planned as stated in this announcement.
	drilling areas, provided this information is not commercially sensitive.	