

ASX ANNOUNCEMENT

High-grade infill drilling results over 2km pave way for April Resource update

Assays up to 26g/t confirm continuity and regular geometry below existing 1Moz Resource[#] at Bombora

Highlights

- Infill drilling confirms continuity of mineralisation below the northern part of the 1Moz Bombora open pit Resource[#] at the Lake Roe project, 100km east of Kalgoorlie
- **×** Results include:
 - 9.15m @ 7.00g/t Au from 558.85m, including 2m @ 26.15g/t in BBDD0107W1; and
 - 3.68m @ 10.58g/t Au from 607m, including 2.88m @ 13.03g/t Au in BBDD0107W1
- × The results provide more firm evidence that Bombora has significant scale, highgrades, continuity of mineralisation and predictable geometry
- × The mineralisation remains open in every direction
- In the central part of Bombora, reconnaissance hole BBDD0108 intersected a new steep lode 800m below surface, the deepest intercept to date. Results include:
 - 2.64m @ 11.70g/t Au from 933.08m, including 1.92m @ 14.03g/t
- The latest results will form part of a global Resource update planned for April 2021 to incorporate the Bombora, Kopai-Crescent and Claypan areas; Regular updates are then planned as infill drilling is completed in other areas such as the Tura lode
- Three rigs are operating with an emphasis on growing the Resource; these comprise two diamond rigs at Bombora and an RC rig at Kopai-Crescent 2km north of Bombora where drilling has identified gold in two flat shear zones over a 1.8km x 300m area
- Additional drill capacity will be introduced in January 2021 to test several new targets defined by aircore drilling over a 30km strike length

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au Website: www.breakerresources.com.au

Breaker Resources NL (ASX: BRB) ("Breaker", the "Company") is pleased to report further results from diamond and reverse circulation (**RC**) drilling at the Company's 100%-owned Lake Roe Project, 100km east of Kalgoorlie, Western Australia.

Breaker Executive Chairman Tom Sanders said: "These latest results are highly significant because they establish the continuity of high-grade mineralisation over a 2km length directly below the existing 1Moz Resource.

"They also show that the continuity and geometry of the mineralisation at Bombora is typical of the Archean deposits seen in WA's Eastern Goldfields. The lodes are predictable and repetitive and directly comparable to many well-known mines including the Golden Mile deposit. This augurs extremely well for the Resource update we are planning for April 2021.

Figure 1: Bombora Long Section Showing Major Steep and Flat Lodes with A\$2,200 Open Pit Shell*

Figure 2: Bombora North: Perspective View of 2km-long Northern Flat Lode Array with A\$2,200 Open Pit Shellst

"Bombora is part of a 9km-long gold system. The increasing predictability of structure is helping to identify a lot of new drilling targets. For example, we plan to trace some of the big flat structures we are seeing at Kopai-Crescent, Claypan and Bombora eastwards into the magnetite-rich contact of the syenite. These are lighting up geochemically in our aircore drilling over a 12km distance. We also have a lot of targets identified by aircore drilling over 30km of strike that don't yet have an RC drill hole."

Drilling Program

Figure 3: Lake Roe Geology with A\$2,200/oz Open Pit Shell# & RC & Diamond Drilling (maximum gold)

Results are reported for two diamond drill holes targeting a 150m-wide array of regular high-grade gold steep, flat and west-dipping lodes situated below the 1Moz open pit Resource[#] at Bombora (Figures 1-3; BBDD0107W1 and BBDD0108; 1,492.2m). The first half of BBDD107 was reported on 30 October 2020. This drilling completes the 160m-spaced infill drilling in the central and northern parts of Bombora.

A further 57 RC drill holes were completed at the Kopai-Crescent Prospect, a satellite discovery situated 2km north of Bombora (Figures 3 & 7; BBRC1601-1602; BBRC1746-1800; 6,529m). RC drilling at Kopai is progressing on a nominal 100m x 40m drill hole spacing to complete mapping out the extent of gold mineralisation in preparation for a maiden resource. Further details of the drilling are provided in Annexure 1.

Results/Analysis

Bombora

A full listing of significant results is provided in Appendix 1. More significant results are summarised in Figures 1 and 2.

Infill diamond drilling on 160m drill lines below the northern part of the 1Moz open pit Resource[#] has confirmed continuity of a 2km-long array of high-grade flat gold lodes. Results include:

- 9.15m @ 7.00g/t Au from 558.85m including 2m @ 26.15g/t in BBDD0107W1 (Photo 1); and
- 3.68m @ 10.58g/t Au from 607m including 2.88m @ 13.03g/t Au in BBDD0107W1.

In the central part of Bombora, reconnaissance hole BBDD0108 intersected a new steep lode 800m below surface, the deepest intercept to date. Results include:

• 2.64m @ 11.70g/t Au from 933.08m, including 1.92m @ 14.03g/t.

The flat lode array forms part of a 150m-wide mineralised zone of regular, stacked flat, steep and west-dipping mineralised faults within the upper, iron-rich part of the dolerite (Figure 4).

Figure 4: Cross-section 6601880N with A\$2,200/oz Open Pit Shell*

The results at Bombora indicate kilometre-scale, high-grade continuity, confirming the predictability, mineability and growth potential within a 9km-long gold system in the early stages of delineation (Figure 5).

All lodes remain open at depth and along strike, reinforcing the multi-million ounce growth potential of the 9km-long gold system.

Figure 5: Lake Roe 3-D Perspective View of Steep, Flat and West Lodes with A\$2,200/oz Open Pit Shell*, Diamond Drill Hole Traces, and RC & Diamond Drilling Gram/Metre Intercepts >5gm

Photo 1: Mineralised half core, part of BBDD0107W1 560m-561m interval, 35.12g/t Au

Crescent-Kopai

RC drilling 2km to the north of Bombora at the Kopai-Crescent Prospect continued to intersect gold in two flat shear zones over a 1.8km x 300m area (Figure 6). More significant hits (Table 1) include:

- BBRC1761 4m @ 2.36g/t Au from 12m and 4m @ 2.39g/t Au from 100m; and
- BBRC1772 12m @ 1.16g/t Au from 28m

A full listing of significant results is provided in Appendix 1.

Figure 6: Crescent-Kopai Geology Showing Flat Mineralised Zone and RC/DD Maximum Gold

Hole No.	Length	Gold g/t	From	То	Sample
BBRC1748	8	0.96	71	79	Riffle Split
	2	1.93	72	74	Riffle Split
	1	2.34	72	73	Riffle Split
BBRC1755	3	1.30	97	100	Riffle Split
	2	1.75	98	100	Riffle Split
	1	2.96	98	99	Riffle Split
	6	1.09	124	130	Riffle Split
	4	1.55	124	128	Riffle Split
	2	2.40	125	127	Riffle Split
	1	3.52	126	127	Riffle Split
BBRC1761	4	2.36	12	16	Composite
	7	0.55	72	79	Riffle Split
	3	0.97	76	79	Riffle Split
	2	1.28	76	78	Riffle Split
	1	1.87	77	78	Riffle Split
	4	2.59	100	104	Composite
BBRC1772	12	1.16	28	40	Composite
	8	1.39	28	36	Composite
BBRC1799	12	0.51	92	104	Composite
	8	0.68	92	100	Composite
	4	0.99	96	100	Composite

Table 1: Crescent-Kopai significant results

Planned Drilling

Three drill rigs are underway with a focus on resource delineation – two diamond rigs at Bombora, and one RC rig at Kopai-Crescent, 2km north of Bombora.

Diamond drilling in progress at Bombora has started closing the drill line spacing to 80m and is working southwards on the "northern lode system" and "Tura lode system" in preparation for a maiden underground resource planned for April 2021 (Figure 7).

Figure 7: Current and planned diamond drill holes

Additional drilling capacity will be introduced in mid-January 2021 to test several new discovery targets defined by aircore drilling over a 30km strike length.

About Breaker Resources NL/Lake Roe Gold Project

Breaker Resources NL (ASX BRB) is focused on a rare new greenfields gold camp at its 100%-owned Lake Roe Gold Project, situated in a Tier 1 jurisdiction, 100km east of Kalgoorlie, Western Australia. The Company is well-funded following completion of recent capital raisings, and is well supported with Electrum Strategic Opportunities Fund II and Paulson and Co holding 20% of the company, the Directors 8% and Franklin Templeton approximately 6%.

Following the discovery of Bombora in 2015, the Company completed 250,000m of RC and diamond drilling to establish a 1Moz open pit Resource[#] and create an extensively de-risked development option in a single pit configuration.

The deposit is a typical Archean, multi-lode gold deposit hosted by dolerite and has yielded some of the best drill hits in Western Australia in the last few years, such as 17m @ 15.85g/t, 7m @ 61.78g/t and 32m @ 15.31g/t (ASX Release 27 July 2020). The Bombora deposit remains open in all directions.

Since the start of material step-out drilling in 2020, the Company has identified three large areas of discovery targeted for ongoing resource growth, and has confirmed the underground mining potential. Importantly, the pattern of drilling and consistent discovery established each quarter over a five year period bears all the hallmarks of new gold camp and regional drilling indicates scope for a 30km-long gold system.

The Company is currently running three drill rigs continuously and is planning to ramp this up. Breaker's strategy is to build value by expanding the Resource to expand and de-risk the Company's development options.

Authorised by the Board of Directors

Tom Sanders Executive Chairman Breaker Resources NL

10 December 2020

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au Media Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

*Refers to an intermediate level A\$2,200/oz Whittle open pit shell based on open pit optimisations conducted on the Company's diluted MIK Resource of 2 September 2019 by independent consultant, Intermine Engineering Consultants using the following key parameters:

- (a) Conventional open pit mining practices with cost assumptions provided by independent consultants and contractors in line with open pit mining operations of a similar type and scale in Western Australia;
- (b) CIL processing at a rate of 2.5Mtpa with independently provided costs;
- (c) Metallurgical recovery of 92% based on detailed metallurgical studies; and
- (d) Pit slope angles provided by Pre-feasibility Study-level geotechnical studies.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource is based on material announced to the ASX on 2 September 2019. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the market announcement, and that all material assumptions and technical parameters underpinning the estimate in the market announcement continue to apply and have not materially changed.

		Tonnes	Grade	Ounces
Indicated	oxide	141,000	1.3	6,000
	transitional	1,842,000	1.4	83,000
	fresh	16,373,000	1.4	714,000
	Total	18,356,000	1.4	803,000
Inferred	oxide	214,000	1.0	7,000
	transitional	922,000	0.9	27,000
	fresh	3,717,000	1.2	144,000
	Total	4,853,000	1.1	178,000
	Grand Total	23,210,000	1.3	981,000

Notes:

• Reported at 0.50g/t Au cut-off

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1: Significant Drilling Results

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
BBDD0107W1	Bombora	6602659	458568	312	1006.4	-56	90	511	537	26	0.68	Half core
				includi	ng			527.9	536.3	8.4	1.66	Half core
				includi	ng			535.7	536.3	0.6	4.28	Half core
				ingludi	~			558	5/5.85	17.85	3.89	Half core
				includi	ng			558.85	559 15	9.15	7.00	Half core
				incloai	ig			560	562.66	2.66	21.09	Half core
				includi	ng			560	562	2	26.15	Half core
				and				564	565	1	2.37	Half core
				and				567	568	1	3.55	Half core
								575	575.85	0.85	4.11	Half core
				includi	20			605	613	8	4.94	Half core
				includi	na			607.8	610.68	2.88	13.03	Half core
					.9			726.5	729	2.5	0.22	Half core
				includi	ng			726.5	728	1.5	0.27	Half core
								741	745	4	0.33	Half core
				includi	ng			742.8	745	2.2	0.50	Half core
				includi	ng			742.8	743.1	0.3	2.09	Half core
	Bombora	6601719	158636	317	1019.4	-57	89	940.4 19.6	747.3 24.83	5.23	0.42	Half core
BBDD0108	Bombora	0001717	400000	includi	1017.4 na	-37	07	20.6	24.05	1	0.61	Half core
				and	.9			24.42	24.83	0.41	0.57	Half core
								52.35	52.64	0.29	0.66	Half core
								59.41	60.61	1.2	0.28	Half core
				includi	ng			59.41	60	0.59	0.46	Half core
				includi	20			69.06	70.29	0.25	2.15	Half core
				Includi	ig			81 78	83.82	2.04	0.34	Half core
				includi	ng			81.78	82.18	0.4	0.73	Half core
								83.37	83.82	0.45	0.81	Half core
								123	129	6	0.27	Half core
				includi	ng		1	123	124	1	0.47	Half core
				includi	20			127.47	129	1.53	0.74	Half core
				Incloui	ig			134.73	138.32	3.59	0.93	Half core
				includi	ng		1	134.73	135.66	0.93	0.34	Half core
				and				136.52	138.32	1.8	1.66	Half core
				includi	ng	1	1	137.48	138.32	0.84	2.88	Half core
				in a lucality				159.19	162.23	3.04	1.49	Half core
				and	ng			161.54	159.49	0.3	5.32	Half core
				ana				183	183.3	0.3	1.23	Half core
								189.9	190.2	0.3	0.83	Half core
								204	204.3	0.3	0.36	Half core
								230.56	234	3.44	1.14	Half core
				includi	ng			230.56	233.52	2.96	1.28	Half core
				and	ig			230.56	230.00	2.1	1.64	Half core
				includi	na			231.42	232.07	0.65	2.16	Half core
				and				233.12	233.52	0.4	5.01	Half core
								251.7	253.3	1.6	1.28	Half core
				includi	ng			251.7	252	0.3	0.74	Half core
				and				253	253.3	0.3	5.88	Halt core
				includi	na			272.7	273.01	2.3	1.18	Half core
				ii iciuuli	9			296.77	299	2.23	1.39	Half core
				includi	ng			296.77	297.28	0.51	2.12	Half core
				includi	ng			296.77	297.28	0.51	2.12	Half core
		ļ,		and				298.7	299	0.3	6.53	Half core
								305.47	305.8	0.33	0.68	Half core
								317.18	317.52	0.34	0.84	Half core
				includi	na		1	325 79	330	3 4 21	1.50	Half core
				includi	ng			325.79	328.49	2.7	2.59	Half core
				includi	ng			325.79	326.58	0.79	6.13	Halfcore
				and				327.75	328.49	0.74	2.62	Half core
				and				329	330	1	0.35	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
								351.08	353.02	1.94	0.32	Half core
				includi	ng			351.08	351.75	0.67	0.47	Half core
								352.72	353.02	0.3	1.00	Half core
								6/8 705.17	6/9	0.02	0.53	Half core
								887.3	887.8	0.83	4.13	Half core
								933.08	935.72	2.64	11.70	Half core
				includi	ng			933.08	935	1.92	14.03	Half core
								951	952.19	1.19	0.48	Half core
				includi	ng			951.68	952.19	0.51	0.62	Half core
								971	974.7	3.7	0.92	Half core
				includi	ng			971	973.6	2.6	1.26	Half core
				includi	ng			9/1	9/2.55	1.55	1.94	Half core
REPC1401	Kongi-Crescent	6604902	457821	312	19 84.0	-59	269	9/1.00	972.33	0.69	3.90	Hull Core
BBRC1602	Kopai-Crescent	6604904	457882	311	114.0	-59	270	12	16	4	0.12	Composite
BBRC1746	Kopai-Crescent	6604798	458071	311	102.0	-59	269	36	44	8	0.70	Composite
BBRC1747	Kopai-Crescent	6604802	458152	311	102.0	-59	268	44	56	12	0.42	Composite
				includi	ng			44	48	4	0.71	Composite
								52	56	4	0.38	Composite
								61	64	3	0.20	Riffle Split
PPDC1740	Kamal Cara	(/05000	450001	Includi		50	070	62	63		0.35	Rittle Split
BBRC1/48	Kopai-Crescent	6605002	458221	311 includi	102.0	-37	270	70	79	8	0.96	Riffle Split
				includi	ng			72	74	1	2 34	Riffle Split
BBRC1749	Kopai-Crescent	6604998	458287	311	108.0	-59	272	84	88	4	0.24	Composite
BBRC1750	Kopai-Crescent	6604799	458352	312	150.0	-59	270	_				
BBRC1751	Kopai-Crescent	6605002	458156	313	96.0	-59	272	58	62	4	0.16	Composite
				includi	ng			58	59	1	0.23	Riffle Split
								76	80	4	0.25	Composite
BBRC1752	Kopai-Crescent	6605101	458224	312	90.0	-60	272					
BBRC1753	Kopai-Crescent	6605103	458299	312	84.0	-60	268					
BBRC1754	Kopai-Crescent	6603102	458170	312	150.0	-60	270	97	100	3	1.30	Riffle Split
BBRC1755	Kopul-Clescelli	0003204	430170	includi	100.0 na	-00	2/1	98	100	2	1.75	Riffle Split
				includi	ng			98	99	1	2.96	Riffle Split
BBRC1756	Kopai-Crescent	6605202	458209	312	156.0	-61	271					•
BBRC1757	Kopai-Crescent	6605202	458239	312	84.0	-61	273					
BBRC1758	Kopai-Crescent	6605344	458139	315	150.0	-61	273	104	108	4	0.22	Composite
								124	130	6	1.09	Rittle Split
				includi	ng			124	128	4	1.55	Riffle Split
				includi	na			125	127	1	3.52	Riffle Split
				includi	na			126	127	1	3.52	Riffle Split
BBRC1759	Kopai-Crescent	6605339	458222	313	150.0	-60	268					
BBRC1760	Kopai-Crescent	6605244	457772	315	84.0	-60	273					
BBRC1761	Kopai-Crescent	6605395	457879	314	150.0	-61	273	8	20	12	0.89	Composite
				includi	ng			12	16	4	2.36	Composite
				includi				72	79	/	0.55	Riffle Splif
				and	ıy			76	73	3	0.84	Riffle Split
				includi	na			76	78	2	1.28	Riffle Split
				includi	ng			77	78	1	1.87	Riffle Split
								100	104	4	2.59	Composite
BBRC1762	Kopai-Crescent	6605761	457987	313	54.0	-60	267					
BBRC1763	Kopai-Crescent	6605480	458100	313	138.0	-60	274	16	20	4	0.26	Composite
	Kanai Carrent	440E400	450100	210	150.0	(0	2/9	104	108	4	0.16	Composite
BBBC1745	Kopai-Crescent	66003480	430137	313	130.0	-60	∠68 249	144	1/12	Λ	0.22	Composite
DDKC1/03	Ropul-Crescent	0003477	400177	515	100.0	-00	207	172	176	4	0.22	Composite
BBRC1766	Kopgi-Crescent	6605478	458217	313	124.0	-60	271	84	88	4	0.33	Composite
BBRC1767	Kopai-Crescent	6605000	457755	312	132.0	-59	271	108	116	8	0.18	Composite
	-	-		includi	ng			108	112	4	0.20	Composite
BBRC1768	Kopai-Crescent	6606104	457736	311	120.0	-61	270					
BBRC1769	Kopai-Crescent	6606105	457782	311	120.0	-60	268					
BBRC1770	Kopai-Crescent	6606105	457820	311	120.0	-60	271					
BBRC1/71	Kopal-Crescent	6006106	43/860	311	120.0	-6U	2/1					

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
BBRC1772	Kopai-Crescent	6606041	457939	311	156.0	-60	269	28	40	12	1.16	Composite
				includi	ng			28	36	8	1.39	Composite
BBRC1773	Kopai-Crescent	6606041	457982	311	102.0	-61	270	36	40	4	0.42	Composite
BBRC1774	Kopai-Crescent	6606041	458023	311	102.0	-60	269	32	36	4	0.43	Composite
BBRC1775	Kopai-Crescent	6606043	458061	311	102.0	-59	269					
BBRC1776	Kopai-Crescent	6606099	458102	311	102.0	-60	270					
BBRC1777	Kopai-Crescent	6606104	458139	311	120.0	-59	271					
BBRC1778	Kopai-Crescent	6606101	458181	311	150.0	-59	269					
BBRC1779	Kopai-Crescent	6606098	458221	311	150.0	-60	270					
BBRC1780	Kopai-Crescent	6606097	458256	311	180.0	-60	269					
BBRC1781	Kopai-Crescent	6605942	457860	311	120.0	-60	269	52	56	4	0.10	Composite
BBRC1782	Kopai-Crescent	6605943	457904	311	150.0	-60	268					
BBRC1783	Kopai-Crescent	6605943	458063	311	117.0	-60	269	80	84	4	0.12	Composite
								92	96	4	0.15	Composite
								108	112	4	0.95	Composite
BBRC1784	Kopai-Crescent	6605941	458099	311	150.0	-60	269	116	120	4	0.24	Composite
BBRC1785	Kopai-Crescent	6604995	458058	311	90.0	-61	271	10			0.10	
BBRC1786	Kopai-Crescent	6604903	458039	311	84.0	-61	269	12	16	4	0.13	Composite
								28	36	8	0.29	Composite
				includi	ng			28	32	4	0.35	Composite
		((0 (0 0) (450110	011	04.0	(0	0.00	52	56	4	0.42	Composite
BBRC1/8/	Kopai-Crescent	6604904	458119	311	84.0	-60	268	36	40	4	0.16	Composite
								44	48	4	0.12	Composite
				ingludi				52	60	0	0.31	Composite
BBBC1700	Kanai Crassant	4404200	450250	211		40	240	52	36	4	0.45	Composite
DDRC1700	Kopal-Crescent	6604300	430337	311	96.0	-60	207					
BBRC1707	Kopai-Crescent	6604360	458440	311	90.0	-01	2/0	28	34	8	0.20	Composite
DBRC1770	Kopul-Clescelli	0004300	430440	includi	na	-01	207	32	36	1	0.27	Composite
BBRC1791	Kongi-Crescent	6604364	458478	311	84.0	-61	268	52	50	-	0.57	Composite
BBRC1792	Kopai-Crescent	6604400	458444	311	84.0	-60	269					
BBRC1793	Kopai-Crescent	6604442	458470	311	84.0	-59	269	20	24	4	0.15	Composite
BBRC1794	Kopgi-Crescent	6604499	458441	311	102.0	-60	269	44	48	4	0.36	Composite
BBRC1795	Kopai-Crescent	6604641	458320	311	102.0	-61	267	68	72	4	0.28	Composite
BBRC1796	Kopgi-Crescent	6604642	458358	311	102.0	-61	272	76	92	16	0.30	Composite
				includi	ng			76	84	8	0.45	Composite
				includi	ng			80	84	4	0.58	Composite
				and				88	92	4	0.23	Composite
BBRC1797	Kopai-Crescent	6604640	458417	311	120.0	-61	269	88	100	12	0.39	Composite
				includi	ng			92	96	4	0.94	Composite
BBRC1798	Kopai-Crescent	6604637	458427	311	126.0	-60	271	92	96	4	0.16	Composite
BBRC1799	Kopai-Crescent	6604686	458362	311	108.0	-61	271	92	104	12	0.51	Composite
				includi	ng			92	100	8	0.68	Composite
				includi	ng			96	100	4	0.99	Composite
BBRC1800	Kopai-Crescent	6604443	458444	311	90.0	-60	268	8	32	24	0.15	Composite
				includi	ng			16	20	4	0.22	Composite
				and				24	28	4	0.20	Composite

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1 m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with

Criteria	JORC Code explanation	Commentary
		moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.

Criteria	JORC Code explanation	Commentary			
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.			
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.			
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.			
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.			
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.			
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.			
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.			
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.			
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.			
	results for field duplicate/second-halt sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.			
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.			

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
16212	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a

Criteria	JORC Code explanation	Commentary
		LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data	Data spacing for reporting of Exploration	Drill holes are variable spacings.
distribution	Results.	Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The reported drilling is reconnaissance in nature at this stage.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in
Audite or	The results of any audits or reviews of	a Company facility for future reference if required.
AUGUS OF		

Criteria	JORC Code explanation	Commentary
reviews	sampling techniques and data.	conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB.
	royalties, native title interests, historical sites, wilderness or national park and environmental settings.	associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by

Criteria	JORC Code explanation	Commentary
		different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Grades are reported above a nominal lower cut-off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied. All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Grades are reported above a lower cut- off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.