

Strong infill drilling results highlight continuity of 2km high-grade lode system below 1Moz Resource# at Bombora

Other shallow RC results up to 8m at 5.71g/t Au in satellite areas deliver solid platform for April Resource update

Highlights

- × Strong drilling results from several areas at the Lake Roe Gold Project
- <u>Bombora</u>: multiple intersections in two infill diamond holes demonstrate the continuity and mining potential of a 2km-long high-grade lode system below the open pit Resource; Results include:
 - BBDD0109W1 12.8m @ 3.62g/t Au including 2.3m @ 12.08g/t from 571.4m
 9.75m @ 3.21g/t Au including 3m @ 9.27g/t from 660.3m
 15m @ 2.66g/t Au including 5m @ 4.55g/t from 739m
 - BBDD0110W1 9.69m @ 3.44g/t Au including 3m @ 6.64g/t from 544.83m
 16.45m @ 2.90g/t Au including 2m @ 8.20g/t from 509m
- <u>Crescent-Kopai</u>: RC drilling 2.5km north of Bombora identified new high-grade zones up to 400m-long in a 1,800m x 300m mineralised zone; Results include:
 - BBRC1632 12m @ 3.85g/t Au including 8m @ 5.71g/t from 144m
 - BBRC1626 20m @ 1.51g/t Au including 4m @ 3.86g/t from 32m
 - BBRC1605 5m @ 3.85g/t Au including 3m @ 5.88g/t from 34m
- ➤ Highly promising results from RC drilling at <u>Carbineer</u> indicate potential for a 1,500m mineralised zone directly east of Bombora
- × Assay results pending for several diamond drill holes and 72 RC holes
- The results provide more solid evidence that Bombora is part of an emerging 9km-long gold district in the early stages of delineation
- × Regular resource updates are anticipated after the April 2021 update

Breaker Resources NL (ASX: BRB) is pleased to report that its strategy to grow the 1Moz Resource[#] at its Lake Roe Gold project near Kalgoorlie continues to deliver strong results.

The latest results include high-grade assays from below the 1Moz open pit Resource[#] at the Bombora deposit within Lake Roe and from the Crescent-Kopai and Carbineer areas (Figure 1). The results upgrade the continuity and growth potential in each area and will form part of the Resource update planned for next month.

Breaker Executive Chairman Tom Sanders said: "The diamond drill results from Bombora are significant because they are the first 80m-spaced infill holes into the 2km-long high-grade lode system situated below the 1Moz open pit Resource.

"We are seeing regularity in structure over large distances due to extensive early drilling to understand the structures controlling the gold mineralisation. As a result, we have established genuine scale, which is important to the economics of a mining operation."

Figure 1: Lake Roe RC & Diamond Drilling by Maximum Gold over Geology with A\$2,200/oz Open Pit Shell*, Crescent-Kopai Mineralisation Outline (blue) & Planned or Pending RC Drill Holes (white triangles)

Diamond Drilling: Bombora

A major diamond and reverse circulation (**RC**) drilling program is underway at the Bombora deposit targeting resource growth and discovery to lay the foundation for a major gold development. The Company is currently running two diamond drill rigs and either one or two RC drill rigs depending on drill crew availability arising from an industry-wide labour shortage in this area. Details of the drilling are provided in Annexure 1.

Results/Analysis: Bombora

Diamond drilling at Bombora is targeting a 2km-long, 150m-wide array of regular high-grade gold steep, flat and west-dipping lodes situated below the 1Moz open pit Resource[#] (Figure 2). The lode system was previously defined on a 160m drill line spacing and is open to the north and south.

Figure 2: Long Section Looking West Showing Main Lode Elements with A\$2,200/oz Open Pit Shell*

The lode array forms part of a 150m-wide mineralised zone of regular, stacked flat, steep and west-dipping mineralised faults within the upper, iron-rich part of the dolerite (Figure 3). Diamond drilling underway is progressively closing the drill-line spacing to 80m for ongoing resource delineation.

Results are reported for the first two 80m-spaced infill diamond drill holes BBDD0109W1 and BBDD0110/110W1 comprising a total of 1,625.89m (Figures 2-4). A full listing of significant results is provided in Appendix 1 with more significant intersections shown in Figures 2, 4 and 5.

Each hole returned multiple intersections as summarised above and in Appendix 1. Assay results are pending for several other diamond drill holes (Figure 4).

Collectively, the new results at Bombora confirm kilometre-scale, high-grade continuity, materially enhancing the mining and growth potential for the project.

Figure 3: Cross-section 6601880N with A\$2,200/oz Open Pit Shell*

RC Drilling: Crescent-Kopai

Gold at Crescent-Kopai, situated 2.5km to the north of Bombora, occurs over an 1,800m x 300m area within flat-lying mineralised fault zones hosted by basalt and dolerite. Gold is accompanied by silica-albite-biotite-carbonate-pyrite alteration and quartz veining. Transported lake sediment over the zone is typically 5m thick.

Drilling results are reported for 19 RC holes totalling 1,981m of drilling (Figure 6).

RC drilling at Crescent-Kopai continued to map the areal extent of gold mineralisation on a 100m x 40m drill hole pattern in the southern part of the Crescent-Kopai discovery in preparation for a maiden resource in April 2021.

Figure 6: Crescent-Kopai RC & Diamond Drilling by Maximum Gold over Geology (High-Grade Mineralisation Trends in blue dashed lines; Planned or Pending RC Drill Holes as white triangles)

Results/Analysis: Crescent-Kopai

The RC drilling identified new high-grade trends up to 400m-long (Figures 6-7). Several other high-grade gold mineralisation trends have now been identified by drilling within the 1,800m x 300m mineralised area (Figure 6).

More significant results include:

- BBRC1632 12m @ 3.85g/t Au including 8m @ 5.71g/t from 144m;
- BBRC1626 20m @ 1.51g/t Au including 4m @ 3.86g/t from 32m; and
- BBRC1605 5m @ 3.85g/t Au including 3m @ 5.88g/t from 34m.

A full listing of significant results is provided in Appendix 1 with more significant intersections shown in Figure 6.

The results confirm the potential for a significant satellite deposit that is still growing. There is scope for ongoing growth both within the 1,800m x 300m mineralised zone, where several "internal" zones of higher grade are now evident, and where the deposit is still open along strike (Figure 6).

Further drilling is planned to outline the extent and controls of the high-grade gold mineralisation, and to follow the gold where open along strike. This is mainly to the south along the Claypan West Shear (Mako Prospect) and along Claypan East Shear towards the syenite contact.

The higher grade shoots appear to be associated with the intersection of the flat mineralised structure and west- and/or steep-dipping faults.

Figure 7: Lake Roe 3-D Perspective View of Steep, Flat and West Lodes with A\$2,200/oz Open Pit Shell*, Diamond Drill Hole Traces, and RC & Diamond Drilling Gram/Metre Intercepts >5gm

RC Drilling: Carbineer

The Carbineer Prospect is located 400m-700m east of the Bombora deposit. Gold was initially identified in mid-2020 in a 1.5km-long extension of the Bombora Dolerite (Figure 8), but follow-up drilling was delayed by the sourcing of an RC drill rig and manning issues, largely related to COVID-19.

Mineralisation is associated with the west-dipping Quarries Fault corridor and has associated flat structures similar in nature to the gold mineralisation at Bombora. Significant gold mineralisation intersected to the south along the Quarries Fault was reported in the Company's ASX Releases of 2 July 2020 and 22 September 2020.

RC drilling results are reported for 11 holes at the Carbineer Prospect totalling 2,078m on a 100m x 40m spacing (Figure 8).

Figure 8: Carbineer: RC & Diamond Drilling by Maximum Gold over Geology with Planned or Pending RC Drill Holes (white triangles; new hole labels annotated in black; previous holes in blue)

Results/Analysis: Carbineer

Significant results are listed in Appendix 1 with more significant intersections shown in Figure 8.

The RC drilling has firmed up 400m of mineralised strike. This is open to the north with at least 1.5km of strike potential (Figure 8). The results indicate strong potential for future resource growth in an area that has the potential to expand the footprint of the A\$2,200/oz open pit shell.

RC Drilling: Syenite Target

Seven reconnaissance RC holes for 1,080m targeted the Swan Lake Syenite to the east of Bombora (Figure 1). The magnetite-altered syenite contact is geochemically anomalous in gold, silver, tungsten and molybdenum over a 12km strike length based on aircore drilling (Figure 9).

Two of the wide-spaced "wildcat" holes intersected anomalous gold up to 0.74g/t, tentatively associated with strike extensions of the west-dipping Quarries Fault, and the west-dipping Wobbegong Fault, situated to the east of the Quarries Fault.

This is potentially significant and further drill testing of the syenite is planned.

Figure 9: RC and Diamond Drilling Maximum Gold (g/t) on Aircore Maximum Gold Image and Aeromagnetics

About Breaker Resources NL/Lake Roe Gold Project

Breaker Resources NL (ASX BRB) is unlocking the potential of a major new greenfields gold district at its 100%-owned, 680km² Lake Roe Gold Project, located 100km east of Kalgoorlie, Western Australia. The project is situated between two operating gold mines on a recently identified southern extension of the 22Moz Laverton Tectonic Zone.

After discovery of the Bombora deposit in 2016, drilling identified a typical Archean, multi-lode gold deposit hosted by dolerite with some of the best drill hits in Western Australia, such as 17m @ 15.85g/t, 7m @ 61.78g/t and 32m @ 15.31g/t (ASX Release 27 July 2020).

Extensive drilling with the aim of creating an early development option established a 1Moz open pit Resource[#] with an 80% Indicated component grading 1.4g/t Au (diluted) which is open in all directions. The gold occurs in a 150m-wide zone over a 3km distance, starting 5m from surface. A 2.7km-long single open pit scenario is still growing.

Figure 10: Lake Roe Project Location

Extensional drilling since 2020 demonstrates that Bombora is part of a 9km gold system with multimillion ounce growth potential, based on several new developments:

- Three satellite discoveries Crescent-Kopai, Claypan and Carbineer;
- Confirmation of the underground mining potential following the identification of 2km of continuous high-grade lodes below the open pit Resource;
- Aircore drilling, which indicates the gold potential extends over a 30km strike length many aircore anomalies within the 9km gold system are still untested; and
- Confirmation that the gold lodes are part of a regular kilometric-scale fault pattern.

Authorised by the Board of Directors

Tom Sanders Executive Chairman Breaker Resources NL

9 March 2021

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

<u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

*Refers to an intermediate level A\$2,200/oz Whittle open pit shell based on open pit optimisations conducted on the Company's diluted MIK Resource of 2 September 2019 by independent consultant, Intermine Engineering Consultants, using the following key parameters:

- (a) Conventional open pit mining practices with cost assumptions provided by independent consultants and contractors in line with open pit mining operations of a similar type and scale in Western Australia;
- (b) CIL processing at a rate of 2.5Mtpa with independently provided costs;
- (c) Metallurgical recovery of 92% based on detailed metallurgical studies; and
- (d) Pit slope angles provided by Pre-feasibility Study-level geotechnical studies.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#]The information in this report that relates to the Mineral Resource is based on material announced to the ASX on 2 September 2019. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the market announcement, and that all material assumptions and technical parameters underpinning the estimate in the market announcement continue to apply and have not materially changed.

		Tonnes	Grade	Ounces
Indicated	oxide	141,000	1.3	6,000
	transitional	1,842,000	1.4	83,000
	fresh	16,373,000	1.4	714,000
	Total	18,356,000	1.4	803,000
Inferred	oxide	214,000	1.0	7,000
	transitional	922,000	0.9	27,000
	fresh	3,717,000	1.2	144,000
	Total	4,853,000	1.1	178,000
	Grand Total	23,210,000	1.3	981,000

Notes:

• Reported at 0.50g/t Au cut-off

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1: Significant Drilling Results

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
BBDD0109	Bombora	6602727	458567	312	696.0	-58	89		As	says Pena	ding 0 - 696	m
BBDD0109W1	Bombora	6602727	458567	312	927.8	-58	89	360	374	14	1.00	Half core
Wedge off BBDD	00109 Starting 304.6m			includ	ing			363	374	11	1.22	Half core
				includ	ing			363	373	10	1.31	Half core
				includ	ing			363	365	2	3.50	Half core
				includ	ing			364	365	1	5.53	Half core
				and	k			370	372	2	1.39	Half core
								385	388	3	0.93	Half core
								385	386.18	1.18	1.21	Half core
								399	400	1	0.59	Half core
								420	442	22	0.70	Half core
				includ	ing			421.7	442	20.3	0.74	Half core
				includ	ing			421.7	428.9	7.2	0.83	Half core
				includ	ing			421.7	423	1.3	1.60	Half core
				anc	k			424.4	424.9	0.5	2.74	Half core
				anc	k			428	428.9	0.9	1.17	Half core
				anc	k			437.25	442	4.75	1.72	Half core
				includ	ing			437.25	440	2.75	2.51	Half core
				includ	ing			437.25	439	1.75	3.23	Half core
				includ	ing			438	439	1	3.82	Half core
								445	446	1	1.14	Half core
								447	448	1	0.81	Half core
								487	489	2	0.39	Half core
								488	489	1	0.52	Half core
								504.8	530	25.2	0.34	Half core
				includ	ing		•	504.8	505.8	1	0.74	Half core
								510.9	530	19.1	0.38	Half core
				includ	ing			510.9	512.25	1.35	0.70	Half core
				and	ł			516	517	1	0.48	Half core
				and	ł			520	521	1	0.54	Half core
				and	k			522.7	523.05	0.35	1.38	Half core
				and	k			526	527	1	0.48	Half core
				and	k			528.6	530	1.4	2.52	Half core
				and	k			529	530	1	3.24	Half core
								549.8	550.15	0.35	0.59	Half core
								564	599	35	1.60	Half core
				includ	ing			571.4	599	27.6	1.99	Half core
				includ	ing			571.4	589	17.6	2.84	Half core
				includ	ing			571.4	584.2	12.8	3.62	Half core
				includ	ing			571.4	572.4	1	4.98	Half core
				anc	k			576.7	580	3.3	9.62	Half core
				includ	•			576.7	579	2.3	12.08	Half core
				includ	ing			576.7	578	1.3	17.17	Half core
				anc	ł			583	584.2	1.2	5.23	Half core
								660.3	670.05	9.75	3.21	Half core
				includ	0			665	670.05	5.05	6.00	Half core
				includ				666	669	3	9.27	Half core
				includ	ing		1	666	667	1	13.57	Half core
								675	681	6	0.45	Half core
								675	676	1	1.05	Half core
								677	678	1	0.52	Half core
		L			ļ			705	708	3	0.51	Half core
				includ	-			705	706.2	1.2	1.11	Half core
				anc				729	744	15	2.16	Half core
				includ	Ģ			732	744	12	2.66	Half core
				includ	Ū.			732	734	2	4.25	Half core
				includ	-			732.7	734	1.3	6.23	Half core
				includ	ing		r	732.7	733.05	0.35	17.93	Half core
					L		I	739	744	5	4.55	Half core
				includ				739	742.8	3.8	5.79	Half core
				includ	ing		1	739	742	3	7.05	Half core
	ļ				L			786.05	788.7	2.65	0.51	Half core
				includ	ing		1	787	788	1	1.09	Half core
							1	834	837.3	3.3	0.39	Half core
								001.75	00.1.15	1 -	0.10	
				includ	-			834.75	836.45	1.7	0.60	Half core
				includ includ and	ing			834.75 834.75 836	836.45 835.15 836.45	1.7 0.4 0.45	0.60 1.21 0.85	Half core Half core Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
BBDD0109W2	Bombora	6602727	458567	312	932.6	-58	89		Assay	s Pending	597.2 - 9	32.6m
Wedge off BBDD	00109 Starting 597.2m											
BBDD0110	Bombora	6602600	458570	313	422.8	-56	89	29.64	30	0.36	0.22	Half core
								191	193	2	3.13	Half core
				includ	ing		r	192	193	1	6.08	Half core
								239.06	239.79	0.73	1.37	Half core
								244.35	245	0.65	0.66	Half core
								296.32	297.27	0.95	1.91	Half core
								316.09	320	3.91	1.08	Half core
				includ				316.09	319.57	3.48	1.19	Half core
				includ and				316.09 318	316.77 319.57	0.68	2.82 1.38	Half core Half core
					1			325.78	330.33	4.55	0.33	Half core
				includ	ina			325.78	326.63	0.85	0.33	Half core
				anc				329.13	330.33	1.2	0.43	Half core
								346	361.42	15.42	1.06	Half core
				includ	ina			347	360	13	1.23	Half core
				includ				351.86	360	8.14	1.82	Half core
				includ	ing			354	357.3	3.3	3.43	Half core
				includ	ing			354	356.35	2.35	4.35	Half core
				anc	ł			355	356.35	1.35	5.39	Half core
				includ	ing			355	355.55	0.55	7.42	Half core
								414.79	418.18	3.39	3.69	Half core
				includ	ing			414.79	415.77	0.98	11.99	Half core
BDD0110W1	Bombora	6602596	458573	313	1000.0	-56	89	448	480	32	0.27	Half core
Vedge off BBDD	00110 Starting 420m			includ	ing			456.5	463	6.5	0.69	Half core
				includ	-			456.5	457.6	1.1	2.18	Half core
				anc				459.6	460.7	1.1	0.72	Half core
				and				461.9	463	1.1	0.73	Half core
				anc				471.37	471.67	0.3	1.50	Half core
				anc		1	1	479	480	1	0.93	Half core
				in a hual				487	489	2	0.51	Half core
				includ	ing		1	487	488	1	0.68	Half core
				includ	ina			497.5 500.65	502.93 502.93	5.43	0.50	Half core
				includ includ	-			502.63	502.93	2.28 0.3	0.81 3.51	Half core Half core
					ing			502.85 514	532.59	18.59	2.11	Half core
				l includ	ina			514.72	524.41	9.69	3.44	Half core
				includ	-			514.72	517.9	3.18	6.64	Half core
				includ	÷			514.72	515.8	1.08	5.87	Half core
				anc	-			516.9	517.9	1	10.87	Half core
				and				520.56	523.17	2.61	2.61	Half core
				includ				520.56	520.86	0.3	5.57	Half core
				anc	-			521.85	523.17	1.32	3.69	Half core
				includ	ing			522.57	523.17	0.6	6.48	Half core
				anc	ł			523.75	524.41	0.66	2.65	Half core
				and	ł			528	528.32	0.32	7.80	Half core
				anc	ł			529.81	530.9	1.09	1.48	Half core
								543	588	45	1.34	Half core
				includ				544.83	584.6	39.77	1.50	Half core
				includ	-			544.83	561.28	16.45	2.90	Half core
				includ	-			545.68	548.48	2.8	8.20	Half core
				includ				545.68	546.55	0.87	5.63	Half core
	1			anc				547.4	548.48	1.08	14.44	Half core
				and				550.81	554.07	3.26	3.22	Half core
								550.81	551.35	0.54	5.98	Half core
				includ	ing				EEA 07	0.00	114	Laf core
				includ anc	ing 1			553.24	554.07	0.83	6.64	Half core
				includ anc anc	ing 1 1			553.24 555.45	555.75	0.3	5.29	Half core
				includ and and and	ing 1 1			553.24 555.45 558.68	555.75 561.28	0.3 2.6	5.29 3.68	Half core Half core
				includ anc anc includ	ing 1 1 1 ing			553.24 555.45 558.68 558.68	555.75 561.28 560.26	0.3 2.6 1.58	5.29 3.68 4.43	Half core Half core Half core
				includ and and includ and	ing 1 1 1 ing 1			553.24 555.45 558.68 558.68 559.5	555.75 561.28 560.26 560.26	0.3 2.6 1.58 0.76	5.29 3.68 4.43 5.83	Half core Half core Half core Half core
				includ and and includ and and	ing 1 1 1 1 ing 1 1			553.24 555.45 558.68 558.68 559.5 565.56	555.75 561.28 560.26 560.26 565.93	0.3 2.6 1.58 0.76 0.37	5.29 3.68 4.43 5.83 3.48	Half core Half core Half core Half core Half core
				includ and and includ and and and	ing 1 1 1 1 1 1 1			553.24 555.45 558.68 558.68 559.5 565.56 581	555.75 561.28 560.26 560.26 565.93 584.6	0.3 2.6 1.58 0.76 0.37 3.6	5.29 3.68 4.43 5.83 3.48 2.12	Half core Half core Half core Half core Half core Half core
				includ and includ and and and and and includ	ing 1 1 1 1 1 1 1 1 1 1 1			553.24 555.45 558.68 558.68 559.5 565.56 581 581.6	555.75 561.28 560.26 560.26 565.93 584.6 584	0.3 2.6 1.58 0.76 0.37 3.6 2.4	5.29 3.68 4.43 5.83 3.48 2.12 2.94	Half core Half core Half core Half core Half core Half core Half core
				includ and includ and and and includ includ	ing 1 1 1 1 1 1 1 1 1 1 1 1 1			553.24 555.45 558.68 558.68 559.5 565.56 581 581.6 581.6	555.75 561.28 560.26 560.26 565.93 584.6 584 582.25	0.3 2.6 1.58 0.76 0.37 3.6 2.4 0.65	5.29 3.68 4.43 5.83 3.48 2.12 2.94 6.61	Half core Half core Half core Half core Half core Half core Half core Half core
				includ and includ and and and and and includ	ing 1 1 1 1 1 1 1 1 1 1 1 1 1			553.24 555.45 558.68 558.68 559.5 565.56 581 581.6	555.75 561.28 560.26 560.26 565.93 584.6 584	0.3 2.6 1.58 0.76 0.37 3.6 2.4	5.29 3.68 4.43 5.83 3.48 2.12 2.94	Half core Half core Half core Half core Half core Half core Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	Sample
BBDD0111	Bombora	6602323	458585	313	320.5	-58	89		Ass	ays Pendi	ng 0 - 320.	5m
BBDD0111W1	Bombora	6602323	458585	313	897.7	-58	89		Assay	/s Pending	255.2 - 89	7.7m
-	00111 Starting 255.2m											
BBRC1603	Crescent-Kopai	6604900	457919	311	120.0	-59	271	14	30	16	1.35	Riffle Split
				incluc and	-			18 27	20 29	2	5.36 3.58	Riffle Split Riffle Split
BBRC1604	Crescent-Kopai	6604899	457963	311	120.0	-59	270	27	30	2	0.96	Riffle Split
BBRC1605	Crescent-Kopai	6604704	458118	311	60.0	-60	270	34	39	5	3.85	Riffle Split
				includ				35	38	3	5.88	Riffle Split
BBRC1606	Crescent-Kopai	6604636	458119	311	84.0	-60	267	25	32	7	0.81	Riffle Split
				incluc			r	25	28	3	1.06	Riffle Split
BBRC1607	Crescent-Kopai	6604642	458159	311	84.0	-59	269	26	28	2	1.00	Riffle Split
BBRC1608	Crescent-Kopai	6604557	458207	311	84.0	-60	268	10	14	4	0.37	Riffle Split
BBRC1622	Crassent Kanai	6604504	458513	includ 313	ing 102.0	-60	275	12 48	13 52	1	0.56	Riffle Split Composite
BBRC1622	Crescent-Kopai Crescent-Kopai	6604503	458751	313	84.0	-60	2/3	40	52	4	0.11	Composite
BBRC1624	Crescent-Kopai	6604504	458832	318	84.0	-60	268					
BBRC1625	Crescent-Kopai	6604498	458674	315	84.0	-60	272					
BBRC1626	Crescent-Kopai	6604501	458586	313	84.0	-60	268	28	52	24	1.33	Composite
	·			includ	ling		·	32	52	20	1.51	Composite
				incluc	-			40	48	8	2.58	Composite
				incluc	-		-	40	44	4	3.86	Composite
BBRC1627	Crescent-Kopai	6604636	458481	313	120.0	-60	268	7	8	1	0.12	Riffle Split
	Crease and K	4404741	150500	212	100.0	10	070	104	108	4	0.25	Composite
BBRC1628 BBRC1629	Crescent-Kopai Crescent-Kopai	6604641 6604638	458522 458562	313 313	102.0 127.0	-60 -60	273 273	96 88	100 124	4 36	0.13 0.47	Composite Composite
DDKC1027	Cresceni-kopai	0004030	400002	incluc		-60	2/3	88	124	30	0.47	Composite
				incluc	-			88	92	4	0.49	Composite
				and	-			96	120	24	0.58	Composite
				incluc	ling			96	100	4	0.55	Composite
				and	b			104	112	8	0.95	Composite
				incluc		(-	108	112	4	1.37	Composite
BBRC1630	Crescent-Kopai	6604641	458597	313	120.0	-59	269	112	116	4	0.11	Composite
BBRC1631	Crescent-Kopai	6604799	458390	313	126.0	-60	272	92	96	4	0.18	Composite
BBBC1/20	Conservative and	6604804	458551	314	156.0	-60	266	116	120	4	0.24	Composite Composite
BBRC1632	Crescent-Kopai	0004004	430331	includ		-60	200	144 148	156 156	12 8	3.85 5.71	Composite
BBRC1633	Crescent-Kopai	6604904	458341	312	120.0	-59	269	148	108	4	0.15	Composite
BBRC1634	Crescent-Kopai	6604901	458381	313	120.0	-59	268					
BBRC1611	Carbineer	6601801	458958	312	198.0	-60	270					
BBRC1612	Carbineer	6601802	458994	312	198.0	-60	269					
BBRC1613	Carbineer	6601801	459099	312	198.0	-58	269					
BBRC1614	Carbineer	6601701	458882	312	200.0	-60	270	16	24	8	0.14	Composite
BBRC1615	Carbineer	6601702	458921	312	198.0	-59	269	108	112	4	0.19	Composite
BBRC1616	Carbineer	6601701	458961	312 includ	198.0	-60	271	24 28	36 32	12	0.39	Composite Composite
				INCIUC	ling			108	112	4	0.72	Composite
BBRC1617	Carbineer	6601704	459081	312	198.0	-60	268	124	128	4	0.38	Composite
								148	160	12	0.82	Composite
				incluc	ling			148	156	8	1.04	Composite
				incluc				152	156	4	1.22	Composite
BBRC1618	Carbineer	6601705	459123	312	96.0	-60	267					
BBRC1619	Carbineer	6601601	458913	312	198.0	-59	270	72	84	12	0.75	Composite
				incluc	ling		1	72 176	76	4	1.44	Composite Composite
BBRC1620	Carbineer	6601600	459075	312	198.0	-59	271	1/6	180 116	4 8	0.72 0.26	Composite
55KC1020	Caldineer	0001000	-07070	incluc		57	2/1	112	116	4	0.40	Composite
				.2.50			1	148	156	8	0.32	Composite
								148	152	4	0.45	Composite
BBRC1621	Carbineer	6601601	459114	312	198.0	-58	270					
BBRC1609	Syenite	6602803	459830	312	120.0	-59	275					
BBRC1610	Syenite	6601804	458879	312	198.0	-60	270	80	84	4	0.15	Composite
			450075	010	102.0		0/0	120	124	4	0.79	Composite
BBRC1635	Syenite	6604421	459375	312	198.0	-59	268					
BBRC1636	Syenite	6604398 6604401	459633 459942	319 316	126.0 120.0	-60 -60	267 273					
BBRC1637 BBRC1638	Syenite Syenite	6604401	459942	316	120.0	-60	2/3	68	72	4	0.40	Composite
BBRC1639	Syenite	6603600	459282	313	120.0	-60	207	113	114	1	0.40	Riffle Split
	•,•••••					50		183	184	1	0.47	Riffle Split

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Holes were drilled to variable depth dependent upon observation from the supervising geologist.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken.
		Diamond core is drilled HQ3, HQ or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with

Criteria	JORC Code explanation	Commentary
		moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected
		via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack of bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a

Criteria	JORC Code explanation	Commentary
		LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are variable spacings. Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The reported drilling is reconnaissance in nature at this stage.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or	The results of any audits or reviews of	No formal audits/reviews have been

Criteria	JORC Code explanation	Commentary
reviews	sampling techniques and data.	conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by

Criteria	JORC Code explanation	Commentary
		different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Grades are reported above a nominal lower cut-off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied. All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.

reporting Exp rep hig pro	here comprehensive reporting of all ploration Results is not practicable, presentative reporting of both low and gh grades and/or widths should be	Grades are reported above a lower cut- off grade of 0.2g/t Au in areas of reconnaissance drilling. In known
Exp	acticed to avoid misleading reporting of ploration Results.	mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
substantive exploration data ge sur me res ge po	ther exploration data, if meaningful and aterial, should be reported including (but of limited to): geological observations; eophysical survey results; geochemical rvey results; bulk samples – size and ethod of treatment; metallurgical test sults; bulk density, groundwater, eotechnical and rock characteristics; otential deleterious or contaminating bstances.	There is no other substantive exploration data.
wo de dril Dic po ge dril	e nature and scale of planned further ork (eg. tests for lateral extensions or epth extensions or large-scale step-out illing). agrams clearly highlighting the areas of ossible extensions, including the main eological interpretations and future illing areas, provided this information is ot commercially sensitive.	Further work is planned as stated in this announcement.