

Lake Roe Gold Project, WA

High-grade results of up to 20g/t extend underground potential

Plus, strong results open up two new areas east of Bombora deposit

Highlights

- ★ More outstanding assays show Breaker's strategy to establish a large open pit and underground gold project at the 1.4Moz[#] Lake Roe is progressing well
- Drilling continues to extend and confirm the continuity of the known high-grade mineralisation below the planned open pit at Lake Roe's Bombora deposit
- × At Carbineer Prospect 400m east of Bombora, reconnaissance RC drilling confirmed 1km of mineralised strike potential; Follow-up drilling is planned to quantify the resource potential
- Reconnaissance RC results indicate a 4km-long gold target in the Swan Lake Syenite in the hanging wall of the Bombora deposit
- **×** Two diamond rigs now operating; RC rig is scheduled to start next week

Details of the drilling are provided below:

× North Lode Array

- 2km-long North Lode Array extended 80m to the north following multiple hits on three separate flat lodes below open pit Resource (BBDD0123)
- Strong infill results on three new 80m sections upgrade continuity (BBDD0113/BBDD0113W1, BBDD0121W1) which is favourable for future mining

Hole No.		Intercept	Depth From	Hole No.		Intercept	Depth From
BBDD0113		8.15m @ 3.91 g/t Au	424m	BBDD0121W1		0.84m @ 12.18g/t Au	247.96m
	including	3.15m @ 8.9g/t Au	429m			2.51m @ 3.05 g/t Au	340.4m
	including	1m @ 20.27g/t Au	429m		including	1.6m @ 4.4g/t Au	340.4m
		5.7m @ 4.17 g/t Au	436.3m		including	0.6m @ 9.27a/t Au	340.4m
	including	1.7m @ 9.64g/t Au	436.3m			3.6m @ 1.98 g/t Au	482.4m
	including	0.7m @ 17.95g/t Au	436.3m		including	2 92m @ 2 36a/t Au	482.4m
		9.3m @ 2.92 g/t Au	580.7m		including	0.3m @ 16.57g/t Au	482.4m
	including	3m @ 6.1g/t Au	587m	PPDD0122	inclouing	4m@2.91a/t Au	402.4111 59.4m
	including	1m @ 10.58g/t Au	587m	BBDD0123	in all calling	4111@ 2.710/1A0	504 57
		1.1m @ 4.75g/t Au	594.9m		including	3.43m @ 3.29g/1 AU	584.57m
	including	0.5m @ 9.78g/t Au	595.2m		including	1.5m @ 6.05g/f Au	584.5/m
BBDD0113W1		15m @ 1.98g/t Au	423m			0.5/m@9.52g/fAu	585.5m
	includina	2m @ 7.07a/t Au	436m			1m @ 6.97g/t Au	614m
		16.57m @ 1.3a/t Au	532.33m			4m @ 3.18g/t Au	620m
	including	4.8m @ 3.15a/t Au	541.2m			3m @ 4.14 g/t Au	621m
	including	3.8m @ 3.85a/t Au	541.2m		including	2.2m @ 5.36g/t Au	621m
	and	1m @ 9.29a/t Au	544m		including	1m@10.4g/t Au	621m
		4.33m @ 4.55 a/t Au	587m			8.37m @ 3.23g/t Au	690.43m
	including	1.2m @ 7.27a/t Au	587m			5.85m @ 4.46g/t Au	692.95m
	and	1.13m @ 8.72a/t Au	590.2m		including	3.76m @ 6.48g/t Au	692.95m
		1.1m @ 5.62a/t Au	603.9m		including	2.85m @ 7.55g/t Au	692.95m
		1m @ 5.08g/t Au	612m		including	0.9m @ 10.61g/t Au	694m

Table 1: Significant Intercepts

× Tura and Daisy Lodes

Strong visible gold hits on Tura and Daisy Lodes expand high-grade potential to the south below open pit Resource (assays pending BBDD0124)

• Carbineer Prospect, 400m east of Bombora

Reverse Circulation (**RC**) results confirm 1km mineralised zone in structural repetition of Bombora dolerite. RC drill rig is scheduled to arrive next week

• Syenite Gold Target, 700m east of Bombora

4km-long gold target identified in syenite (granite) appears to share flat- and westlode architecture of Bombora deposit. RC drilling planned

• The results point to an emerging greenfields gold district in the early stages of delineation

Figure 1: RC and Diamond Drilling Colour-coded by Maximum Gold (g/t) on Aircore Maximum Gold Image and Aeromagnetics

Breaker Executive Chairman Tom Sanders said: "The diamond drilling results extend the highgrade gold potential below the open pit Resource in two areas, upgrade the continuity on three new 80m-spaced sections within the 2km-long North Lode array, and expand the high-grade potential to the south on the Tura and Daisy Lodes.

The RC drilling results open up the gold potential in two new areas at the Carbineer Prospect, 400m east of Bombora, and over a 4km-long target zone hosted by the Swan Lake Syenite, 700m east of Bombora, where the early indications point to a flat- and west-lode architecture shared with the Bombora deposit."

Drilling Program

Breaker Resources NL (ASX: BRB, the **Company**) is pleased to report more high-grade drill intersections at the 1.4Moz[#] Lake Roe Gold Project, 100km east of Kalgoorlie in Western Australia. The drilling is part of a major program to expand the Resource and establish the critical mass for a large new open pit and underground gold development.

Results are reported for seven extensional and infill diamond drill holes totalling 3,801m (**Figure 1**), targeting high-grade lodes in two areas below the 803,000oz open pit Resource[#] at the Bombora deposit (**Figure 2**).

Reconnaissance RC drilling results are also reported for 70 holes totalling 9,582m in the northern part of the 9km gold system at Lake Roe (**Figure 1**). This drilling targeted the Carbineer and Mako Prospects, and the syenite contact to the east of Bombora.

The Company is currently running two diamond drill rigs. RC drilling is planned to resume on 2 August 2021 and will target the Carbineer Prospect, extensions of high-grade mineralisation along the Quarries Fault at Bombora South, regional targets along the contact of the Swan Lake Syenite, and high-grade targets at the Windward Prospect, 15km north of Bombora.

Further details of the drilling are provided in Appendix 1 and Annexure 1.

Results/Analysis

Diamond Drilling

The seven 80m-spaced diamond drill holes consisted of:

- (i) Five holes targeting the northward extension of a large 2km-long, 150m-wide array of regular lodes situated below the northern part of the deposit (**Figure 2**); and
- (ii) Two holes targeting the southern extensions of two major sub-vertical mineralised "steep" shears, the south-plunging *Tura and Daisy Lodes*.

The diamond drill holes include two wedges BBDD0112, BBDD0113/BBDD0113W1, BBDD0116-117, BBDD0121W1 and BBDD0123. Assay results for four of these holes are incomplete as summarised in Appendix 1 (BBDD0113W1, BBDD0016, BBDD0121W1 and BBDD0123).

Two kilometre North Lode Array

BBDD0123 was the first hole drilled north of the maiden underground Resource, targeting extensions of the flat lode array. The hole was drilled 80m north of the current resource limits and successfully intersected the flat lodes at depth, with multiple intersections including up to 3.76m at 6.48g/t Au, 1m at 10.4g/t Au and 1.5m at 6.05g/t Au on three separate flat lodes. Some assays are pending but this hole has already confirmed that the flat lodes extend further north with consistent grades. Mineralisation remains open to the north and drilling is currently in progress to track this mineralisation on 80m increments.

Drill holes BBDD0112 and BBDD0121W1 successfully intersected flat lodes, closing the drill hole spacing to 80m for the first time on two new drill lines, thereby confirming continuity of the flat lode array between the open pit Resource and the underground Resource.

BBDD0113 and BBDD0113W1 intersected multiple high-grade flat lodes on a new 80m-spaced section, confirming the potential for more high-grade gold to be captured in this part of the underground Resource. Multiple intersections include 3.15m at 8.9g/t Au and 3m at 6.1g/t Au from separate flat lodes.

Tura/Daisy Lodes

BBDD0116 targeted the Tura steep lode but intersected the shear outside the prospective magnetic quartz dolerite due to a combination of excessive drill hole deviation and structural offset.

BBDD0117 targeted flat lodes at depth not yet included in the current Resource. This hole was abandoned at 31.8m deep due to excessive steepening. The hole was recollared as BBDD0119 and was successfully drilled to planned depth. Assays are pending.

Among the other diamond holes with pending assays, BBDD0124, which targeted the Tura steep lode, successfully hit its target and provided exceptional visuals with over twenty visible gold specks ranging up to 1cm in dimension in a 1.4m interval of laminated quartz-pyrrhotite veining (**Photo 1**). Assays are pending.

Visible gold was also encountered in what appears to be an extension of the Daisy Lode at a depth of 544-555.54m (**Photo 2**). Multiple specks of gold up to 1mm in size occur in a 25cm wide quartz vein at a depth of 547.8-548.2m, surrounded by a 1.5m zone of strong silica-albite alteration with 1-5% disseminated-foliated to chunky pyrrhotite (minor chalcopyrite) mineralisation. Assays are pending.

Photo 1: Top: Tura steep lode with visible gold circled in red, BBDD0124 from 317.43m to 317.62m, half core; Bottom: Tura steep with visible gold circled in red, BBDD0124 from 317.62m to 317.79m, full core

Photo 2: HQ core piece with several gold specs together with up to 5% patchy-chunky pyrrhotite and chalcopyrite mineralisation in 25cm wide quartz vein at 547.8-548.2m depth (wet)

RC Drilling

The reconnaissance RC drilling targeted three areas in the northern part of the 9km gold system at Lake Roe (**Figure 1**):

- (i) Carbineer Prospect ~400m east of Bombora (Figure 1);
- (ii) the contact of the Swan Lake Syenite to the east of Bombora (Figures 1, 3 and 4); and
- (iii) the Mako and Hammerhead Prospects, situated near the western element of the Claypan Shear Zone (**Figure 1**).

Carbineer Prospect

The Carbineer Prospect is located 400m-700m east of the Bombora deposit along the westdipping Quaries Fault, adjacent to the eastern branch of the Claypan Shear Zone (**Figure 3**). Gold was identified in a structural repetition of the Bombora dolerite in mid-2020. Previous intersections include 45m @ 1.64g/t Au and 3.15m @ 4.57g/t Au (ASX Releases 2 July 2020 & 22 September 2020).

Figure 3: Carbineer: RC & Diamond Drilling by Maximum Gold (new holes in blue annotation)

Eleven reconnaissance RC drill holes were completed on a 200m x 80m spacing to ascertain the gold potential and to pinpoint the gold-prospective quartz dolerite in preparation for follow-up drill targeting.

The drilling returned wide, anomalous zones up to 2.54g/t Au, confirming 1km of mineralised strike potential. Mineralisation is associated with the west-dipping Quarries Fault corridor and includes

(associated) flat structures as at Bombora.

RC infill drilling is planned at Carbineer to quantify the resource potential targeting the goldprospective quartz dolerite outlined by the scout RC drilling.

Syenite Gold Potential

The magnetite-altered contact of the Swan Lake Syenite to the east of Bombora is prospective for Wallaby-style gold mineralisation. This potential is supported by widespread gold, silver, tungsten and molybdenum anomalism in end-of-hole aircore drilling over a 12km strike length, the magnetite-rich nature of the syenite contact (good host rock for gold), and the proximity of the syenite contact to the Claypan Shear Zone.

BBRC1808 intersected mineralised syenite 300m to the east of Carbineer (up to 4m @ 0.69g/t Au) further upgrading the gold potential of the syenite. In conjunction with previous drilling, the results indicate a 4km-long gold target in the syenite to the east of the Bombora deposit (**Figure 4**).

Previous drilling in the syenite along strike identified grades up to 3.06g/t Au in the oxide zone (BAC2503; ASX Release 31 January 2021), and grades up to 0.74g/t Au in the primary zone accompanied by magnetite-destructive silica-albite and carbonate alteration, shearing and quartz veining (BBRC1639; ASX Release 9 March 2021).

The RC and diamond drill hole coverage is limited (**Figure 4**) but the available data suggest that the flat- and west-dipping lode system at Bombora extends eastwards into the syenite.

Figure 4a: Carbineer: RC & Diamond Drilling by Maximum Gold Figure 4b: RC, Diamond and Aircore by Maximum Gold

Anomalous 4m composite grades up to 12m @ 0.34g/t Au in the northern part of the Mako are under further investigation. The results at the Hammerhead and Mako South areas tend to downgrade the gold potential in these areas.

About Breaker Resources NL/Lake Roe Gold Project

Breaker Resources NL (ASX BRB) is unlocking the potential of a major new greenfields gold district at its 100%-owned, 680km² Lake Roe Gold Project, located 100km east of Kalgoorlie, Western Australia. The project is situated between two operating gold mines on a recently identified southern extension of the 22Moz Laverton Tectonic Zone.

After discovery of the Bombora deposit in 2016, drilling identified a typical Archean, multi-lode gold deposit hosted by dolerite with some of the best drill hits in Western Australia, such as 17m @ 15.85g/t, 7m @ 61.78g/t and 32m @ 15.31g/t (ASX Release 27 July 2020).

Extensive drilling to create an early development option established a 1.4Moz Resource[#] grading 1.5g/t Au which is open in all directions. The gold occurs in a 150m-wide zone over a 3km distance, starting 5m from surface. A 2.7km-long single open pit scenario is still growing.

Figure 5: Lake Roe Project Location

Extensional drilling since 2020 demonstrates that

Bombora is part of a 9km gold system with multi-million ounce growth potential, based on several new developments:

- Three satellite discoveries Crescent-Kopai, Claypan and Carbineer;
- Confirmation of the underground mining potential following the identification of 2km of continuous high-grade lodes below the open pit Resource;
- Aircore drilling, which indicates the gold potential extends over a 30km strike length many aircore anomalies within the 9km gold system are still untested; and
- Confirmation that the gold lodes are part of a regular kilometric-scale fault pattern.

Authorised by the Board of Directors

Tom Sanders Executive Chairman, Breaker Resources NL

30 July 2021

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#] The information in this report that relates to the Mineral Resources and Exploration Targets is based on information announced to the ASX on 29 April 2021. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply.

Open Pit Resource Above 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Bombora Crescent-Kopai Claypan	0.5 0.5 0.5	Ind Inf Subtotal Inf Inf	15.4 2.3 17.7 2.8 2.1	1.43 1.2 1.4 0.9 1.0	711,000 92,000 803,000 86,000 67,000	89%
		Total	22.6	1.3	956,000	74%
Underground Resource Below 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Underground Resource Below 100mRL	Cut-off (g/t Au) 1.0	Category Inf+Ind	Tonnes (millions) 5.3	Grade (g/t Au) 2.4	Ounces 414,000	% Indicated
Underground Resource Below 100mRL Bombora	Cut-off (g/t Au) 1.0 2.0	Category Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5	Grade (g/t Au) 2.4 3.6	Ounces 414,000 291,000	% Indicated 16% 17%
Underground Resource Below 100mRL Bombora	Cut-off (g/t Au) 1.0 2.0 3.0	Category Inf+Ind Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5 1.2	Grade (g/t Au) 2.4 3.6 4.8	Ounces 414,000 291,000 187,000	% Indicated 16% 17% 20%
Underground Resource Below 100mRL Bombora Total Bombora (OP + UG at 1g/t cut-off)	Cut-off (g/t Au) 1.0 2.0 3.0	Category Inf+Ind Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5 1.2 23.0	Grade (g/t Au) 2.4 3.6 4.8 1.6	Ounces 414,000 291,000 187,000 1,217,000	% Indicated 16% 17% 20% 64%

Notes:

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1: Significant Drilling Results

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim		From	То	Length	Gold g/t	Sample
BBDD0112	Bombora	6602240	458594	313	906.8	-58	90		7.9	26	18.1	0.47	Half core
				inclu	uding			including	7.9	13	5.1	0.78	Half core
				Inclu	Jaing		1	including	7.9	9	1.1	1.02	Half core
								and	14	20	2	0.34	Half core
								unu	25	26	1	0.88	Half core
				inclu	Juding			including	25	25.51	0.51	1.03	Half core
									72	73	1	0.50	Half core
									106	107	1	0.63	Half core
									166.17	171	4.83	2.00	Half core
			1	inclu	uding	1	1	including	166.17	169.51	3.34	2.57	Half core
					Ļ			including	168.84	169.51	0.67	7.83	Half core
				Inclu	Jaing		1	including	168.84	169.13	0.29	13.13	Half core
				incl	Idina			including	101.62	100	0.30	0.52	Half core
				inclu	iding			including	181.62	182.47	0.85	1.21	Half core
				a	nd			meroanig	183.6	183.92	0.32	4.39	Half core
				-					201.14	201.5	0.36	11.50	Half core
									280.67	281.13	0.46	1.57	Half core
									298	301.13	3.13	2.09	Half core
				inclu	Juding			including	299	301.13	2.13	3.02	Half core
			· · · · · ·	inclu	uding		r	including	299	300	1	6.04	Half core
									325.62	326.66	1.04	1.74	Half core
		-							335.84	336.2/	0.43	1.54	Half core
		+					<u> </u>		347	380 33	15.89	0.4	Half core
				inclu	l Idina				368.92	373	4.08	2.04	Half core
				inclu	Judina			includina	368.92	369.6	0.68	5.69	Half core
				a	nd				371.6	372.48	0.88	3.13	Half core
									379.62	380.33	0.71	0.63	Half core
									399	400	1	1.98	Half core
									404.76	406	1.24	1.85	Half core
				inclu	uding		1	including	404.76	405.15	0.39	5.32	Half core
				in alı	, alia a			in a localita a	445	448	3	1.2/	Halt core
				inclu	uding			including	446.6/	448	1.55	2.3/	Half core
				IIICIC			1	inclouing	644	648	4	0.52	Half core
				inclu	Juding			includina	645.1	648	2.9	0.64	Half core
				inclu	Juding			including	645.1	647	1.9	0.79	Half core
									773.49	774.47	0.98	0.80	Half core
									782.9	783.2	0.3	1.79	Half core
									870.3	871	0.7	0.68	Half core
			150551			50			904	905	1	0.63	Half core
BBDD0113	Bombora	6602880	458554	312	668.3	-58	88	in a lualin a	39	42	3	0.56	Half core
				INCIU				incluaing	91	40	2	1.23	Half core
				inclu	u Judina			including	91.75	92.69	0.94	2.15	Half core
									106	107	1	10.18	Half core
									153.33	157	3.67	2.66	Half core
				inclu	uding		-	including	153.33	156	2.67	3.52	Half core
				inclu	uding				154.33	155.61	1.28	6.44	Half core
			, I	inclu	uding		1	including	154.33	155	0.67	9.77	Half core
									1/3.63	1/3.93	0.3	2.99	Half core
		+	I I	incl	I	L	l	including	310.3	315 45	0./ 5.25	1.04	Half core
		1		incl	Jan 19 Judina			including	310.3	311.9	1.55	2.64	Half core
				inclu	Juding			including	311	311.9	0.9	4.26	Half core
		1			ГŬ				408	409	1	1.90	Half core
									422	458	36	1.91	Half core
				inclu	uding			including	422	432.15	10.15	3.24	Half core
									424	432.15	8.15	3.91	Half core
									429	432.15	3.15	8.90	Half core
				inclu	uding			including	429	430	1	20.27	Halt core
		-		a	na Idina			including	436.3	458	21./	1.64	Half core
		1		inclu	idina			including	430.3	400.0	14.3	2.23 4.17	Half core
		1		incl	udina			including	436.3	438	17	9.64	Half core
				inclu	Juding			including	436.3	437	0.7	17.95	Half core
		1		a	nd				439	440.3	1.3	2.82	Half core
				a	nd				441	442	1	2.47	Half core
				a	nd				446	450.6	4.6	1.38	Half core
				inclu	uding			including	446	447	1	2.16	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim		From	То	Length	Gold g/t	Sample
									449	450	1	2.56	Half core
									452	458	6	0.60	Half core
				inclu	Juding		1	including	456	458	2	1.38	Half core
				inclu	Idina			including	4/2	496	11	0.56	Half core
				inclu	uding			including	472	403	1	3.17	Half core
				a	nd				476	477	1	3.93	Half core
									545	547	2	0.49	Half core
				inclu	Iding			including	546	547	1	0.55	Half core
									563	564.2	1.2	0.54	Half core
									569	5/0	21	0.85	Half core
				inclu	Idina			including	580.7	590	21	2.92	Half core
				inclu	Juding			including	587	590	3	6.10	Half core
				inclu	Juding			including	587	588	1	10.58	Half core
									594.9	596	1.1	4.75	Half core
				inclu	Iding			including	594.9	595.7	0.8	6.37	Half core
				inclu	Juding		1	including	595.2	595.7	0.5	9.78	Half core
BBDD0113W1	Bomborg	6602880	158551	312	925.8	-58	88		422	000 158	36	1.0/	Half core
Wedge start	at 397.2m	0002000	400004	inclu	udina	-30	00	includina	423	443	20	1.68	Half core
				inclu	uding			including	423	438	15	1.98	Half core
				a	nd			including	436	438	2	7.07	Half core
				a	nd			and	450.15	451	0.85	3.42	Half core
				a	nd		1	and	456.78	458	1.22	2.27	Half core
				incl	Iding		ļ	including	4/4.89	4/9	4.11	0.41	Half core
				ncic	nd			and	4/4.07	473.73	1.08	0.33	Half core
				G				ana	484.73	493.3	8.57	0.38	Half core
				inclu	iding			including	492.27	493.3	1.03	1.62	Half core
									532.33	548.9	16.57	1.30	Half core
				inclu	uding			including	532.33	533.5	1.17	3.98	Half core
				a	nd			and	541.2	546	4.8	3.15	Half core
				inclu	uding			including	541.2	541 91	0.71	3.85	Half core
				a	nd			and	544	545	1	9.29	Half core
									556	557	1	0.53	Half core
									559	559.3	0.3	1.47	Half core
									567.1	567.6	0.5	2.81	Half core
				1					580	613	33	1.45	Half core
				inciu	iding idina			including	584.2	607.4 501.9	23.2	1.//	Half core
				inclu	uding Juding			including	587	591.33	4.33	4.55	Half core
				inclu	uding			including	587	588.2	1.2	7.27	Half core
				a	nd			and	590.2	591.33	1.13	8.72	Half core
				a	nd			and	600.7	607.4	6.7	2.24	Half core
				inclu	uding			including	600.7	601.5	0.8	5.16	Half core
				a	nd			and	603.9	605	1.1	5.62	Half core
				u				unu	625	925.6	Assavs P	ending	Hull Cole
BBDD0116	Bombora	6601297	458940	312	372.6	-59	270		175	175.7	0.7	1.41	Half core
									330	332	2	0.53	Half core
								including	330	331	1	0.75	Half core
									336	336.32	0.32	0.48	Half core
RRDD0117	Bomborg	6601000	458410	214	31.0	50	90		344	3/2.6	Assays P		Halfcoro
Abandoned	BOILDOIG	8601800	430010	514	31.2	-30	07		23	20	1	1.07	Hui Cole
BBDD0121W1	Bombora	6602458	458578	314	600.9	-57	89		211.64	212	0.36	1.70	Half core
Wedge start o	at 178.2m								231	233.5	2.5	0.47	Half core
				inclu	iding	-	-	including	231	232	1	0.54	Half core
				inclu	Juding		1	including	231	231.3	0.3	0.94	Half core
									233	233.5	0.5	1.22	Halt core
									246	∠46.5 259	0.5	0.20	Half core
				inclu	Judina	1		including	247.96	248.8	0.84	12.18	Halfcore
								including	302	308	6	1.01	Half core
				inclu	iding	•			305	308	3	1.71	Half core
				inclu	uding			including	305	306	1	2.72	Half core
						l	I		322	323.57	1.57	0.42	Half core
				inclu	iding			Including	322.91	323.5/	0.66	0.86	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim		From	То	Length	Gold g/t	Sample
									338	342.91	4.91	1.69	Half core
				inclu	iding			including	339	342.91	3.91	2.09	Half core
				inclu	Juding			including	340.4	342.91	2.51	3.05	Half core
				inclu	Juding			including	340.4	342	1.6	4.40	Half core
			, I	Inclu	Jding	1	1	including	340.4	341	0.6	9.2/	Half core
									366	367 430	1	0.64	Half core
									445	430	1	1.23	Half core
									482.4	492	9.6	0.81	Half core
			• •	inclu	uding		1	including	482.4	486	3.6	1.98	Half core
				inclu	Juding			including	482.4	485.32	2.92	2.36	Half core
				inclu	uding			including	482.4	482.7	0.3	16.57	Half core
									484.6	485.32	0.72	2.38	Half core
					l				496.8	500	3.2	0.93	Half core
		-		inclu	Jding			including	496.8	499	2.2	1.21	Half core
				INCIL	Jaing	1		including	496.8	497.3	0.5	3.82	Half core
									550.8	551.5	0.7	4.00	Half core
									553	600.86	Assavs P	endina	Thai coic
BBDD0123	Bombora	6603124	458517	314	870.9	-56	90		0	34	Assays P	ending	
									40	46	6	0.77	Half core
				inclu	uding			including	40	45.18	5.18	0.84	Half core
				inclu	uding			including	41	42	1	1.54	Half core
ļ		-						and	44	45.18	1.18	1.64	Half core
									46	173	Assays P	ending	11-16
									225.4	22/.3	1.9	1.02	Half core
									2/2 103 75	346	Assays P	enaing	Half core
									403.73	403		ending	Than Core
									418	420	2	0.48	Half core
				inclu	uding			including	419	420	1	0.70	Half core
									421	467	Assays P	ending	
									469.6	469.93	0.33	2.80	Half core
									481	482.03	1.03	0.38	Half core
				inclu	uding		r	including	481.66	482.03	0.37	0.86	Half core
									483	514	Assays P	ending	L L sulf a sure
				incl	Idina				523	529.59	6.59	0.81	Half core
				inclu	iding			including	523.94	524.6	0.66	2.00	Half core
				incid				inclouing	528.9	529.59	0.69	2.00	Half core
									540.37	540.7	0.33	1.47	Half core
									552	555	3	0.93	Half core
				inclu	iding			including	552	553.94	1.94	1.18	Half core
			,	inclu	Juding		1	including	552	553	1	1.80	Half core
									560	567	7	0.37	Half core
				inclu	uding				564	566	2	0.82	Half core
			<u> </u>	INCIL	Jaing		1	including	565	566	1	1.00	Half core
		+	I	incl	l Idina	I	I	including	572.5	573 1	0.0	0.75 / 17	Half core
		+		II ICIL	,ang		[menoraling	.578	.579	1	0.76	Half core
									584	588.45	4.45	2.64	Half core
				inclu	, Juding	•	<u> </u>	including	584	588	4	2.91	Half core
				inclu	uding			including	584.57	588	3.43	3.29	Half core
				inclu	uding			including	584.57	586.07	1.5	6.05	Half core
ļ		-	,	inclu	Juding		1		585.5	586.07	0.57	9.52	Half core
									614	615		6.97	Half core
			I	(a)	L.	I	I	incluster.	620	624	4	3.18	Half core
				inclu	Jaing Jaing			including	621	624	3	4.14	Half core
				inclu	udina			including	621	623.2	1	10.30	Half core
		1							624	671	Assavs P	endina	
		1						including	671	676	5	0.91	Half core
			·	inclu	iding		·	including	673.2	676	2.8	1.26	Half core
				inclu	uding			including	673.2	673.85	0.65	2.46	Half core
									675	676	1	1.91	Half core
									683	684	1	0.65	Half core
		+							689	689.75	0.75	0.10	Halt core
				incl	L	I	I		670.43	678.8 202 0	5.3/	3.23	Half core
		+		inclu	idina			including	692.73	696 71	3.00	4.40 6.49	Half core
		+		incl	Jaing Jaing			including	692.95	695.8	2.85	7.55	Half core
		1		inclu	Juding			including	694	694.9	0.9	10.61	Half core
									700.5	870.91	Assays P	ending	

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim		From	То	Length	Gold g/t	Sample
BBRC1640	Syenite	6603597	459519	318	156.0	-60	270		68	72	4	0.19	Composite
BBRC1641	Syenite	6603598	459759	316	150.0	-60	275						Composite
BBRC1642	Syenite	6603597	459998	317	198.0	-59	271						Composite
BBRC1643	Syenite	6603598	459200	315	166.0	-60	274		100	10/			Composite
BBRC1644	Syenite	6603598	459359	316	198.0	-60	2/4		192	196	4	0.10	Composite
BBBC1445	Claypan Shear East	6603377	459437	314	176.0	-39	2/0		00	04	4	0.37	Composite
BBRC1647	Claypan Shear Fast	6603799	458817	314	164.0	-59	207						Composite
BBRC1648	Claypan Shear East	6603796	458900	314	180.0	-59	271		112	116	4	0.11	Composite
BBRC1649	Claypan Shear East	6603797	458978	314	180.0	-59	272		48	52	4	0.11	Composite
BBRC1650	Mako	6604404	458000	315	84.0	-59	270						Composite
BBRC1651	Claypan Shear East	6604403	458498	312	96.0	-59	268		16	24	8	0.17	Composite
BBRC1652	Claypan Shear East	6604402	458554	312	90.0	-61	269						Composite
BBRC1653	Claypan Shear East	6604401	458577	311	84.0	-61	271		1.(00		0.00	Composite
BBRC1654	Claypan Shear East	6604404	458604	311	84.0	-61	2/1		16	20	4	0.20	Composite
BBRC1656	Crescent	6605001	458362	313	120.0	-61	2/1		112	110	4	0.50	Composite
BBRC1657	Crescent	6605001	458402	313	132.0	-60	271						Composite
BBRC1658	Crescent	6605001	458439	313	150.0	-61	272						Composite
BBRC1659	Crescent	6604998	458480	315	108.0	-61	273						Composite
BBRC1801	Carbineer	6601998	459039	316	216.0	-60	270		110	111	1	0.73	Riffle Split
									117	118	1	0.20	Riffle Split
									119	120		0.12	Rittle Split
				inclu	ding		I	including	144	150	6	0.93	Riffle Split
				II ICIU	any			menuumg	147	184		2.30	Composite
BBRC1802	Carbineer	6602002	459079	317	264.0	-61	270		32	36	4	0.10	Composite
									184	187	3	0.19	Riffle Split
				inclu	iding			including	186	187	1	0.29	Riffle Split
									205	206	1	0.14	Riffle Split
									220	224	4	0.12	Composite
BBRC1803	Carbineer	6602199	459038	317	216.0	-60	272		24	34	10	0.41	Riffle Split
				inclu	iding		1	including	24	25		0.24	Riffle Split
				inclu	Idina			including	20	30	0	1.10	Riffle Split
				inclu	Idina			including	20	30	1	1.36	Riffle Split
									33	34	1	1.12	Riffle Split
									35	36	1	0.11	Riffle Split
									188	189	1	0.16	Riffle Split
BBRC1804	Carbineer	6602201	459118	317	300.0	-60	270		36	48	12	0.14	Composite
				in a b	allia ai				64	72	8	0.20	Composite
REPC1905	Carbineer	4402300	459040	317	aing 222.0	50	273	including	64 54	68	4	0.26	Composite
BBRC1805	Culpineer	0002377	437040	inclu	 dina	-37	2/3	including	60	64	0 4	0.17	Composite
BBRC1806	Carbineer	6602400	459115	317	138.0	-59	272	inclouing	28	36	8	0.16	Composite
				inclu	ding			including	32	36	4	0.21	Composite
BBRC1807	Carbineer	6602391	459336	319	198.0	-60	270		172	176	4	0.17	Composite
BBRC1808	Carbineer	6602399	459412	320	234.0	-60	272		60	64	4	0.20	Composite
									216	220	4	0.69	Composite
BBRC1809	Carbineer	6602597	459035	317	251.0	-59	270		152	160	8	0.12	Composite
BBRC1810	Carbineer	6602599	437115	318 317	138.0	-60	269		44	48	4	0.22	Composite
BBRC1812	Mako	6604802	457.520	315	108.0	-60	272						Composite
BBRC1813	Mako	6604801	457598	315	120.0	-60	270		32	40	8	0.19	Composite
				inclu	iding			including	32	36	4	0.25	Composite
BBRC1814	Mako	6604791	457679	314	174.0	-60	271						Composite
BBRC1815	Mako	6604801	457819	314	150.0	-59	270						Composite
BBRC1816	Mako	6604701	457833	315	156.0	-61	271						Composite
BBRC1817	Hammernead	6604395	45/119	318	114.0	-61	268						Composite
BBRC1819	Mako	6604400	457672	317	114.0	-37	2/2						Composite
BBRC1820	Mako	6604399	457835	316	96.0	-59	269						Composite
BBRC1821	Mako	6604398	457915	314	90.0	-57	271						Composite
BBRC1822	Mako	6603991	457766	317	137.0	-59	271						Composite
BBRC1823	Mako	6603997	457846	317	86.0	-61	271		68	72	4	0.22	Composite
BBRC1824	Mako	6604007	457925	315	90.0	-61	271						Composite
BBRC1825	Mako	6604011	458008	313	102.0	-60	269		36	40	4	0.40	Composite
BBRC1826	Hammerhead	6603600	456750	318	108.0	-62	273		96	100	4	0.19	Composite
BBRC182/	Hammerhead	6603276	430/90	318	102.0	-60	2/1						Composite
BBRC1829	Mako	6603605	457800	316	102.0	-60	274		40	48	8	0.24	Composite
	mako	3000000	.0, 000	inclu	ding	50	/ -	including	40	44	4	0.31	Composite

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim		From	То	Length	Gold g/t	Sample
BBRC1830	Mako	6603610	457870	315	108.0	-60	276		92	104	12	0.34	Composite
				inclu	iding			including	92	96	4	0.48	Composite
									100	104	4	0.37	Composite
BBRC1831	Mako	6604900	457700	314	84.0	-60	274		56	60	4	0.28	Composite
									56	60	4	0.28	Composite
BBRC1832	Hammerhead	6603198	456917	320	114.0	-61	275						Composite
BBRC1833	Hammerhead	6603198	456995	320	96.0	-61	275						Composite
BBRC1834	Hammerhead	6603204	457071	320	126.0	-60	274						Composite
BBRC1835	Hammerhead	6603208	457491	319	90.0	-60	271						Composite
BBRC1836	Hammerhead	6603193	457530	319	96.0	-60	270						Composite
BBRC1837	Mako	6603298	458077	314	96.0	-59	271						Composite
BBRC1838	Mako	6603298	458154	314	90.0	-60	274						Composite
BBRC1839	Hammerhead	6602791	456954	319	102.0	-59	270						Composite
BBRC1840	Hammerhead	6602798	457576	317	96.0	-60	271						Composite
BBRC1841	Hammerhead	6602797	457616	317	102.0	-60	274						Composite
BBRC1842	Mako	6602794	458106	315	102.0	-60	274						Composite
BBRC1843	Mako	6602793	458148	315	102.0	-60	270						Composite
BBRC1844	Mako	6602397	457794	315	96.0	-59	267		52	56	4	0.11	Composite
BBRC1845	Hammerhead	6602396	457838	315	96.0	-60	271		32	36	4	0.14	Composite
BBRC1846	Mako	6602393	458136	314	102.0	-60	273						Composite
BBRC1847	Mako	6602397	458216	314	94.0	-62	270						Composite
BBRC1848	Mako	6602210	458089	314	114.0	-62	270						Composite
BBRC1849	Carbineer	6603199	459036	314	204.0	-60	263		40	44	4	0.11	Composite
									56	60	4	0.18	Composite
BBRC1850	Carbineer	6602999	459035	315	200.0	-60	273		136	140	4	0.12	Composite

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1 m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are
		soonined as quarer core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.

Criteria	JORC Code explanation	Commentary
	Aspects of the determination of mineralisation that are Material to the Public Report	RC samples were composited at 4m to produce a bulk 3kg sample.
	In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was	Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger,	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
	Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond core is HQ3, HQ or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and

Criteria	JORC Code explanation	Commentary
		sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected
		via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample

Criteria	JORC Code explanation	Commentary
	representivity of samples.	individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
Tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.
	accuracy (ie. lack ot bias) and precision have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling	The verification of significant intersections by either independent or alternative	Alternative BRB personnel have verified the significant results outlined in this

Criteria	JORC Code explanation	Commentary
and assaying	company personnel.	report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data. All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data	Data spacing for reporting of Exploration	Drill holes are variable spacings.
distribution	Kesolis.	Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The reported drilling is reconnaissance in nature at this stage.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		applied to diamond drill core.
Orientation	Whether the orientation of sampling	Angled RC drilling and diamond drilling

Criteria	JORC Code explanation	Commentary
of data in relation to geological structure	achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential

Criteria	JORC Code explanation	Commentary
		distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole	A summary of all information material to	Refer to Appendix 1 for significant results from the RC and diamond drilling.
	 including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the 	Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
	report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades are reported above a nominal lower cut-off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and	All reported RC and diamond drill assay results have been length weighted

Criteria	JORC Code explanation	Commentary
	longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	(arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Grades are reported above a lower cut- off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.