

Bombora gets Bigger and Deeper with Higher Grades

Breaker is pleased to advise that ongoing drilling at its 1.4Moz[#] Lake Roe Gold Project continues to extend the near-surface mineralisation at the Bombora deposit, and that its new focus on high-grade shoots continues to show predictable and continuous high-grade mineralisation over large distances below the open pit Resource.

Highlights

- ➤ Latest diamond drilling into the sub-vertical lode Tura lode has returned multiple high-grade intercepts, including 8.3m @ 16.8 g/t Au from 310m in hole BBDD124 (estimated true width of 5.0m). In addition, a follow-up drill hole 80m to the south has intersected more visible gold (BBDD0129, assays pending). The results extend the down-plunge extent of high-grade mineralisation to 800 metres.
- ➤ Latest diamond drilling has extended the flat-dipping North lode array a further 80m to the north with more high-grade intercepts, including 6.45m at 8.80g/t Au from 760.1m in hole BBDD125 (estimated true width of 5.5m). This array of stacked lodes now has a continuous down-dip strike of 2.2 kilometres and remains open.
- Step-out RC drilling has extended Bombora a further 250m south with good intercepts returned from the west-dipping Quarries lode such as 3.0m at 6.82g/t Au from 153m in BBRC1870 (estimated true width of 3.0m). The Bombora deposit is now 3.7 kilometres long, and the Quarries fault can be traced over a 3.5 kilometre strike that extends from Bombora South into the partially drilled Carbineer area.

Breaker Managing Director, Tom Sanders said:

"Our three rigs (2 diamond and one RC) continue to deliver fabulous results expanding on the overall Bombora ore system.

"Significantly, as we have drilled deeper, we have outlined a number of continuous highgrade ore shoots throughout the system. The steep-dipping Tura lode is shaping as a bonanza grade ore shoot, whilst the stacked, flat-dipping North lode array to the north also returned excellent high-grade intercepts over good widths, with this system now extending over 2.2 kilometres. Each area shows the right metrics for underground mining, and drilling continues to trace the high-grade shoots down-plunge on 80m step-outs in each area.

"The game has changed for us, not only does Bombora have the metrics to become a large open pit mine, we are now seeing the grade and continuity to allow a transition into underground mining.

"Our drilling continues, and our confidence in the continuity and magnitude of the ore system has made a giant leap."

Breaker Resources NL (ASX: BRB, **Breaker** or the **Company**) is pleased to report more highgrade drill intercepts from its Lake Roe Gold Project, 100km east of Kalgoorlie in Western Australia.

The latest results extend the Bombora deposit to the north and south, and demonstrate high-grade growth potential in several lode types within the ore system.

New Results

This announcement reports on the latest batch of assay results from:

- Thirteen (13) extensional and infill diamond drill holes (7,774m), including two wedges, targeting deeper high-grade lode and vein array systems (refer Figures 1 & 5)
- 2. Eight (8) reverse circulation (**RC**) drill holes (1,720m) targeting southern extensions to the Bombora deposit (refer Figures 1, 4 & 5); and
- Twenty (20) exploratory RC drill holes (2,988m) located to the east and south of Bombora, targeting anomalous gold in previous aircore drilling at the Carbineer Prospect, the Claypan Prospect, and along the margin on the Swan Lake Syenite to the east of Bombora (Figure 5).

Further details of the drilling are provided in Appendix 1 and Annexure 1. Assay results are summarised in Appendix 1 and are shown selectively on Figures 1 to 5.

North Lode Flat Array (Figure 2)

BBDD0123 and BBDD0125 are two 80m step-out holes located north of the current Resource. Those holes were targeting the north extension of the flat lode array. Both holes successfully intersected multiple flat lodes where expected and assay results confirm that the presence of high-grade mineralisation continues. This indicates that the flat lodes array keep extending towards the north. Drilling of the next 80m step-out hole BBDD0128 is currently underway with encouraging visuals. Assays are pending.

BBDD0113W1, BBDD0121 and BBDD0121W1 were 80m infill holes targeting the north flat lodes, partially included in the last resource update in the inferred category. Both holes successfully intersected the flat lodes where expected. Assays results confirm the structural, thickness and grade continuity of the flat lodes to the north.

BBDD0114, BBDD0115 and BBDD0119 were targeting potential for additional stacked lodes at depth. Whilst they intersected flat structures, these were not strongly mineralised but provided valuable information for geotechnical evaluation of mine development.

Figure 2: Bombora North: Perspective View of 2.2km-long Northern Flat Lode Array

Tura and Daisy Steep Lodes (Figure 3)

BBDD0118, BBDD0118W1, BBDD0120, BBDD0122 and BBDD0124 are diamond holes targeting the Tura and Daisy lodes on an 80m spacing pattern (Figures 1 & 3). BBDD0118, BBDD0118W1 and BBDD0122 failed to successfully hit their primary target due to excessive hole deviation. BBDD0124 successfully intersected the Tura and Daisy lodes with visible gold in each intercept that corresponds to high-grade assay results (Photo 1).

Follow-up drill hole BBDD0129 intersected visible gold 80m to the south of BBDD0124 in a mineralised interval extending from 274.4m to 284.9m (Figure 3; assay results pending). In this interval of the Tura steep lode, six specks of visible gold were observed at ~282.55m along laminae in a brecciated quartz vein with deformed clasts of quartz dolerite, containing 0.5% disseminated pyrite, pyrrhotite and trace chalcopyrite.

Figure 3: Long-section of Tura Steep Lode Looking West

Photo 1: Top: Tura Steep Lode with visible gold circled in red, BBDD0124 from 317.43m to 317.62m, half core; Bottom: Tura Steep Lode with visible gold circled in red, BBDD0124 from 317.62m to 317.79m, full core

Bombora Southern Extensions (Figure 4)

Eight (8) RC drill holes at a length of 1,720m were completed on three drill sections targeting the west-dipping Quarries lode at the southern extremity of the Bombora deposit (BBRC1868 – 1875; Figures 4 & 5).

The west-dipping Quarries structure has been traced over a 3.5 kilometre distance from Bombora South to the Carbineer Prospect (Figure 5).

All eight (8) drill holes encountered significant mineralisation with best intercepts of:

- 3m at 6.82g/t Au from 153m in BBRC1870 (including 2m at 9.80g/t Au),
- 3m at 4.28g/t Au from 144m in BBRC1874 (including 1m at 10.94g/t Au), and
- 5m at 2.30g/t Au from 127m in BBRC1869 (including 1m at 6.75g/t Au).

Figure 4: Long-section of Bombora South Looking West

Exploratory RC Drilling

The twenty (20) exploratory RC drill holes to the east and south of Bombora returned anomalous and potentially significant results in several areas as summarised on Figure 5.

The magnetite-altered contact of the Swan Lake Syenite to the east of Bombora is prospective for syenite-associated gold mineralisation.

This potential is supported by widespread gold, silver, tungsten and molybdenum anomalism in end-of-hole aircore drilling over a 12 kilometre strike length, the presence of magnetite-destructive silica-albite and carbonate alteration, shearing and quartz veining, and grades up to 3.06g/t Au in previous drilling (ASX Release 30 July 2021).

Follow-up drilling is planned.

Figure 5: Plan of RC and Diamond Drilling Colour-coded by Maximum Gold (g/t) on Aircore Maximum Gold Image

Ongoing Drill Program

The Company is currently running two diamond drill rigs and one RC rig. Assay results are pending for six diamond drill holes targeting the Bombora deposit, and for 30 RC drill holes targeting the Carbineer Prospect; the Windward Prospect situated 14km north of Bombora; and the margin of the Swan Lake Syenite to the east of Bombora.

A separate 2,000m RC drilling programme is underway at the Company's Manna Lithium discovery, to follow up on the known spodumene discovery made there some time ago. The Company will report on this separately when assay results come to hand.

Authorised by the Board of Directors

0.

Tom Sanders Managing Director, Breaker Resources NL

24 September 2021

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Media

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au

Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

[#] The information in this report that relates to the Mineral Resources and Exploration Targets is based on information announced to the ASX on 29 April 2021. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply.

Open Pit Resource Above 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Bombora	0.5	Ind Inf Subtotal	15.4 2.3 17.7	1.43 1.2 1.4	711,000 92,000 803,000 84,000	89%
Claypan	0.5	Inf Total	2.0 2.1 22.6	1.0 1.3	67,000 956,000	74%
Underground Resource Below 100mRL	Cut-off (g/t Au)	Category	Tonnes (millions)	Grade (g/t Au)	Ounces	% Indicated
Underground Resource Below 100mRL	Cut-off (g/t Au) 1.0	Category Inf+Ind	Tonnes (millions) 5.3	Grade (g/t Au) 2.4	Ounces 414,000	% Indicated
Underground Resource Below 100mRL Bombora	Cut-off (g/t Au) 1.0 2.0	Category Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5	Grade (g/t Au) 2.4 3.6	Ounces 414,000 291,000	% Indicated 16% 17%
Underground Resource Below 100mRL Bombora	Cut-off (g/t Au) 1.0 2.0 3.0	Category Inf+Ind Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5 1.2	Grade (g/t Au) 2.4 3.6 4.8	Ounces 414,000 291,000 187,000	% Indicated 16% 17% 20%
Underground Resource Below 100mRL Bombora Total Bombora (OP + UG at 1g/t cut-off)	Cut-off (g/t Au) 1.0 2.0 3.0	Category Inf+Ind Inf+Ind Inf+Ind	Tonnes (millions) 5.3 2.5 1.2 23.0	Grade (g/t Au) 2.4 3.6 4.8 1.6	Ounces 414,000 291,000 187,000 1,217,000	% Indicated 16% 17% 20% 64%

Notes:

• All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1: Significant Drilling Results

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
BBDD0113W1	Bombora	6602876	458554	312	925.8	-58	88	415	458	43	1.05	45.3	Half core
Wedge start c	t 397.2m			includi	ng	-	<u> </u>	422	458	36	1.24	44.5	Half core
				includi	ng			423	443	20	1.68	33.6	Half core
				includi	ng			423	438	15	1.98	29.7	Half core
				includi	ng		1	429	430	1	3.61	3.6	Half core
								436	438	2	7.07	14.1	Half core
								450.15	451	0.85	3.42	2.9	Half core
								474.89	493.3	18.41	0.30	5.5	Half core
				includi	ng			474.89	4/9	4.11	0.41	1.7	Half core
				inciudi	ng			4/4.89	4/5.95	1.06	0.55	0.6	Half core
				ingludi				4//	4/9	2	0.54	1.1	Half core
				Incluai	ng		1	4//	4/0	8 57	0.74	0.7	Half core
								404.73	473.3	1.03	1.62	17	Half core
				includi	na			492.27	492.6	0.33	2.09	0.7	Half core
				incloal			<u> </u>	532.33	.548.9	16.57	1.30	21.6	Half core
				includi	na			532.33	533.5	1.17	3.98	4.7	Half core
					Ŭ			541.2	546	4.8	3.15	15.1	Half core
				includi	ng			541.2	545	3.8	3.85	14.6	Half core
				includi	ng			541.2	541.91	0.71	6.42	4.6	Half core
								544	545	1	9.29	9.3	Half core
								555	561	6	0.28	1.7	Half core
				includi	ng	-		559	559.3	0.3	1.47	0.4	Half core
								567.1	619	51.9	0.98	50.9	Half core
								580	613	33	1.45	47.8	Half core
								584.2	613	28.8	1.63	46.8	Half core
				includi	ng		1	584.2	607.4	23.2	1.77	41.0	Half core
								586	591.8	5.8	3.80	22.0	Half core
				includi	ng			58/	591.33	4.33	4.55	19.7	Half core
				Includi	ng			500.0	501.22	1.2	0.70	0./	Half core
				and				600.7	607.4	67	2.24	15.0	Half core
				includi	na			600.7	601.5	0.8	5.16	4 1	Half core
				and				603.9	605	1.1	5.62	6.2	Half core
				and				612	613	1	5.08	5.1	Half core
								628	641	13	0.56	7.2	Half core
				includi	ng			628	634.8	6.8	0.89	6.0	Half core
				includi	ng			628	630	2	0.97	1.9	Half core
				includi	ng			628	629	1	1.43	1.4	Half core
				and	1		1	634.3	634.8	0.5	6.68	3.3	Half core
								658	659	1	0.6/	0.7	Half core
				in a lucali				6/2.5	6/6	3.5	0.32	1.1	Half core
				Incluai	ng			6/3	0/0 705	10	0.01	0.0	Half core
								698	705	7	0.20	4.7	Half.core
				includi	na		I	698	699	1	1.91	19	Half core
				incloal			<u> </u>	722.9	731	81	0.82	6.6	Half core
				includi	na			724	726.5	2.5	2.10	5.2	Half core
					Ŭ			726	726.5	0.5	6.80	3.4	Half core
								751	772.6	21.6	1.06	22.8	Half core
				includi	ng			751.4	771	19.6	1.12	21.9	Half core
				includi	ng			751.4	751.7	0.3	5.37	1.6	Half core
								753.4	754	0.6	6.50	3.9	Half core
L								760	763.3	3.3	2.83	9.3	Half core
				includi	ng			762	763.3	1.3	5.60	7.3	Half core
								894	901	7	0.56	3.9	Half core
				includi	ng			894	898.7	4./	0.69	3.3	Half core
				includi	ng		r	894	895	1	1.55	1.6	Half core
DDDD0114	D a urala a ura	((0007(450500	215	700.0	50	00	898.08	898.7	0.62	1.45	0.9	Half core
BBDD0114	BOINDOIG	6602076	430377	315	/72.0	-30	90	9	14.8	2.3	0.44	1.0	Half core
								16.9	10.0	31.1	0.00	11.7	Half.core
							<u> </u>	16.7	23	61	1.07	6.5	Half core
			l	includi	na	l	ł	22	23	1	3.29	3.3	Halfcore
				and				45	47	2	1.61	3.2	Half core
		1		includi	ng			45	46.5	1.5	2.03	3.0	Half core
				includi	ng			46	46.5	0.5	2.55	1.3	Half core
								59	61	2	0.53	1.1	Half core
				includi	ng			59	60	1	0.88	0.9	Half core
								125.75	131	5.25	0.42	2.2	Half core
				includi	ng			125.75	126.11	0.36	1.90	0.7	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
								178	185.19	7.19	0.74	5.3	Half core
				includi	ng			184	185.19	1.19	3.51	4.2	Half core
								204.96	205.23	0.27	1.00	0.3	Half core
				in a boalt				245.63	252	6.3/	0.64	4.1	Half core
				includi	ng			245.63	247.24	0.74	2.15	3.5	Half core
				incidui	ng			240.3	247.24	1	0.49	0.5	Half core
								295	296.1	1.1	4.14	4.6	Half core
								337.44	339	1.56	3.35	5.2	Half core
				includi	ng		1	337.44	338.18	0.74	6.93	5.1	Half core
								347.36	356.6	9.24	0.78	7.2	Half core
				includi	ng			353	356.6	3.6	1.72	6.2	Half core
				includi	ng			354.48	356.6	2.12	2.63	5.6	Half core
				includi	ng			354.48	356	1.52	3.39	5.2	Half core
				includi	ng			354.40	355.2 355.2	0.72	3.33	4.0	Half core
				incidui	lig			428.76	429.21	0.5	3.04	1.4	Half core
								632.3	633	0.40	2.00	1.4	Half core
			1 1	includi	ng		1	746.65	747.4	0.75	0.75	0.6	Half core
								748.05	748.8	0.75	0.40	0.3	Half core
BBDD0115	Bombora	6601963	458606	315	850.1	-58	90	10.5	12	1.5	0.48	0.7	Half core
								64.75	65.15	0.4	1.37	0.5	Half core
								103	108	5	0.73	3.6	Half core
				includi	ng			103	106.2	3.2	0.98	3.1	Halt core
			I	inciudi	ng			105 55	103.48	0.48	3.15	1.5	Half core
								112	113	1	0.68	0.7	Halfcore
	1		1	includi	ng	1		112	112.39	0.39	1.27	0.5	Half core
					Ŭ			134	138.3	4.3	0.65	2.8	Half core
				includi	ng			134.6	136	1.4	1.76	2.5	Half core
				includi	ng			134.6	135.3	0.7	3.28	2.3	Half core
								159.55	161.6	2.05	6.28	12.9	Half core
				includi	ng			159.55	160.7	1.15	10.00	12./	Half core
				Includi	ng			160.1	181	13	1 38	17.9	Half core
				includi	na	Į		169.6	171.9	2.3	6.91	15.9	Half core
				includi	ng			169.6	170.8	1.2	10.41	12.5	Half core
				includi	ng			170.2	170.8	0.6	13.00	7.8	Half core
								221	226.1	5.1	0.69	3.5	Half core
								224	226.1	2.1	1.48	3.1	Half core
				includi	ng			224	225.45	1.45	1.99	2.9	Half core
				Incidui	ng			223	223.43	2.6	1.27	3.3	Half core
			II	includi	ng		1	233	234.6	1.6	1.99	3.2	Half core
				includi	ng			234	234.6	0.6	3.74	2.2	Half core
								247.64	248.9	1.26	2.79	3.5	Half core
				includi	ng			248.52	248.9	0.38	5.57	2.1	Half core
								282	283	1	1.12	1.1	Half core
								323	323 37	0.37	1.90	0.3	Half core
								331.7	332.1	0.4	0.61	0.2	Half core
								347.45	350.65	3.2	0.49	1.6	Half core
				includi	ng			347.45	348.05	0.6	0.80	0.5	Half core
								349	349.6	0.6	0.53	0.3	Half core
								349.9	350.65	0.75	0.92	0.7	Half core
				includi	ng			373	391.8	4.ð	5.10	0.3	Half core
				11000				396.8	397.8	1	2.93	2.9	Half core
								732.93	733.5	0.57	0.59	0.3	Half core
BBDD0118	Bombora	6601159	458980	312	206.8	-61	270	135	137	2	0.24	0.5	Half core
				includi	ng			135	136	1	0.38	0.4	Half core
BBDD0118W1	Bombora	6601159	458980	312	383.7	-61	270	360	364.84	4.84	0.37	1.8	Half core
vveage start c	17 205M			includi	ng			360	363	3	0.49	1.5	Half core
				inciudi			1	362	363	1	0.50	0.7	Halfcore
BBDD0119	Bombora	6601802	458610	314	809.9	-57	88	31	82.6	51.6	0.43	22.2	Half core
								53	54.1	1.1	13.06	14.4	Half core
								60	61	1	1.63	1.6	Half core
								121	123	2	4.36	8.7	Half core
				includi	ng			121	121.85	0.85	10.10	8.6	Half core
				includi	ng			121.55	121.85	0.3	28.20	8.5	Halt core
			1	includi	na	I	I	130.4	130	1.3	5.68	7.4	Half.core
	1			includi	ng			130.4	131	0.6	8.77	5.3	Half core
					-			-	-				

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
								147	148	1	0.64	0.6	Half core
								160	162	2	1.84	3.7	Half core
				includi	ng			160	161	1	3.22	3.2	Half core
								181	184.45	3.45	3.11	10.7	Half core
				includi	ng			182.75	184.45	1./	5.18	8.8	Half core
				Includi	l			213.75	216	2.25	12.24	3.0	Half core
				includi	ng		1	213.75	214.75	1	2.85	2.9	Half core
					Ĭ			230.1	231.35	1.25	2.36	2.9	Half core
				includi	ng	-		231	231.35	0.35	6.59	2.3	Half core
								254	259.3	5.3	0.35	1.9	Half core
				includi	ng I			258.6	259.3	0./	1.53	1.1	Half core
				includi	na			277.6	278.53	0.93	0.23	0.8	Half core
				includi	ng			351	357	6	0.82	4.9	Half core
				includi	ng			351	352.2	1.2	1.54	1.8	Half core
				includi	ng			351.85	352.2	0.35	2.51	0.9	Half core
								356.35	357	0.65	3.96	2.6	Half core
				inciuai	ng			356.35	356.65	0.3	5.34	1.6	Half core
				includi	ina .			710.15	715	4.85	0.40	3.7	Half core
				includi	ing			710.15	711	0.85	1.35	1.1	Half core
								756	761	5	2.06	10.3	Half core
				includi	ng			756.8	761	4.2	2.42	10.2	Half core
				includi	ng			756.8	760	3.2	3.07	9.8	Half core
BBDD0120	Bombora	6601063	458633	312	649.7	-58	89	6	16	10	0.56	5.6	Half core
				includi	ng			7	13	6	0.78	4.7	Half core
				includi	ng			10	12	2	1.53	3.1	Half core
								32	33	1	2.94	2.9	Half core
				includi	ing.			38	44.5	6.5	1.08	5.3	Half core
				includi	ng			41.8	44.5	2.7	1.60	4.3	Half core
				includi	ng			41.8	42.4	0.6	2.64	1.6	Half core
								43.5	44.5	1	2.66	2.7	Half core
				includi				54	59	5	1.61	8.0	Half core
		-		includi	ng			55	57	2	2.50	5.0	Half core
				and	1			58	59	1	2.34	2.3	Half core
								159.6	160.37	0.77	0.45	0.3	Half core
								273	274	1	0.50	0.5	Half core
				includi				306	307	14	0.6/	7.4	Half core
								308.1	314	5.9	0.96	5.7	Half core
				includi	ng			308.1	309.15	1.05	2.23	2.3	Half core
								310.2	311.2	1	1.51	1.5	Half core
				and				312.3	313.05	0.75	1.43	1.1	Half core
				unu				335.35	336.25	0.9	0.65	0.6	Half core
								364	373	9	0.80	7.2	Half core
				includi	ng			365.55	372	6.45	0.94	6.1	Half core
				includi	ng			365.55	366.25	0.7	1.29	0.9	Half core
				and				371	372	0.5	1.51	1.5	Half core
								412	413	1	0.81	0.8	Half core
								468	475.6	7.6	0.37	2.8	Half core
				includi	ng			474	475.6	1.6	1.31	2.1	Half core
								4/3 514	4/3.6	10.0	0.56	5.7	Half core
				includi	ng	·	!	519.35	524.2	4.85	0.90	4.4	Half core
				includi	ng			519.35	519.8	0.45	3.73	1.7	Half core
				and				523.1	524.2	1.1	1.83	2.0	Half core
				includi	na.	l		549	552	3	1.93	5.8	Half core
		1		includi	ng			550.8	551.1	0.3	17.04	5.1	Half core
								585.3	585.8	0.5	0.84	0.4	Half core
BBDD0121	Bombora	6602459	458578	314	227.8	-57	89	20	26	6	0.19	1.2	Half core
				includi	ng			21	24	3	0.25	0.8	Halt core
1	1	1			1	1	1	L 12	212.00	0.00	0.00	0.2	

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
BBDD0121W1	Bombora	6602459	458578	314	600.9	-57	89	211.64	212	0.36	1.70	0.6	Half core
Wedge start c	t 178.2m							231	233.5	2.5	0.47	1.2	Half core
				includi	ng			231	231.3	0.3	0.94	0.3	Half core
				ana				233	255.5	11.04	1.22	12.2	Half core
				includi	ng			247.96	248.8	0.84	12.18	10.2	Half core
								302	308	6	1.01	6.1	Half core
				includi	ng			305	308	3	1.71	5.1	Half core
				includi	ng		1	305	306	1 57	2.72	2.7	Half core
				includi	ina			322.91	323.57	0.66	0.42	0.6	Half core
								339	342.91	3.91	2.09	8.2	Half core
				includi	ng			340.4	342.91	2.51	3.05	7.7	Half core
				includi	ng			340.4	342	1.6	4.40	7.0	Half core
				Inciual	ng		1	340.4	341	0.0	9.27	3.0 0.6	Half core
								429	430	1	0.56	0.6	Half core
								445	446	1	1.23	1.2	Half core
								482.4	492	9.6	0.81	7.8	Half core
				includi	ng			482.4	486	3.6	1.98	7.1	Half core
				includi	na			482.4	482.7	0.3	16.57	5.0	Half core
				and	1			484.6	485.32	0.72	2.38	1.7	Half core
								496.8	500	3.2	0.93	3.0	Half core
				includi	ng			496.8	499	2.2	1.21	2.7	Half core
				Includi	ng			490.8	497.3	0.5	3.82	0.6	Half core
								550.8	551.5	0.7	4.00	2.8	Half core
BBDD0122	Bombora	6600986	458679	312	673.0	-58	91	51	51.5	0.5	0.62	0.3	Half core
								66.6	67.63	1.03	1.42	1.5	Half core
				inciuai	ng			67.13 85.6	67.63 87.9	2.3	2.81	61	Half core
			1	includi	ng		1	87	87.9	0.9	4.81	4.3	Half core
					1		1	97.4	97.7	0.3	0.89	0.3	Half core
								111.6	112.2	0.6	4.02	2.4	Half core
				includi	na			155.6	156.1	0.5	1.97	1.0	Half core
				and	l T			160.03	160.8	0.77	1.13	0.9	Half core
								254	255	1	1.55	1.6	Half core
								567.2	568.2	1	0.86	6.9	Half core
				includi	ing			614	617	3	1.93	5.8	Half core
				includi	ng			615	617	2	2.61	5.2	Half core
	D a vala a var	((02104	450517	includi	ng	57	00	615	616	1	3.71	3.7	Half core
BBDD0123	BOINDOID	6603124	430316	includi	070.9 na	-36	90	40	40	5.18	0.77	4.0	Half core
				includi	ng			41	42	1	1.54	1.5	Half core
				and			1	44	45.18	1.18	1.64	1.9	Half core
								225.4	227.3	1.9	1.02	1.9	Halt core
			I	includi	ng	I	I	329	330	1	2.89	2.9	Half core
								403.75	405	1.25	3.80	4.7	Half core
				in al set				418	420	2	0.48	1.0	Half core
				Inciual	ng		1	419	420	1	0.70	0.7	Half core
								469.6	469.93	0.33	2.80	0.9	Half core
								481	482.03	1.03	0.38	0.4	Half core
			I	includi	ng			481.66	482.03	0.37	0.86	0.3	Half core
				includi	ng	1	1	518	519	1	1.38	1.4	Half core
		1		and				523	529.59	6.59	0.81	5.3	Half core
		ļ		includi	ng			523	523.47	0.47	1.04	0.5	Halfcore
				includi	na	1		523.94	525.31 524.6	0.66	2.00	2.1	Half core
				inciuul				528.9	529.59	0.69	2.66	1.8	Half core
								540.37	540.7	0.33	1.47	0.5	Half core
				in the state				552	555	3	0.93	2.8	Half core
				includi	ng na			552	553 553	1.94	1.18	2.3	Hall Core
								560	567	7	0.37	2.6	Half core
				includi	ng			564	566	2	0.82	1.6	Half core
1		1		includi	ng			565	566	1	1.00	1.0	Half core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
								572.5	579	6.5	0.75	4.9	Half core
				includi	ng			572.5	573.4	0.9	4.17	3.7	Half core
				includi	ng			584.57	588	3.43	3.29	11.3	Half core
				includi	ng			584.57	586.07	1.5	6.05	9.1	Half core
			including						585	0.43	6.29	2.7	Half core
								614	615	1	6.97	7.0	Half core
								620	625	5	2.57	12.9	Half core
				includi	ng			620	624	4	3.18	12.7	Half core
				includi	ng			621	623.2	2.2	5.36	11.8	Half core
				includi	ng			621	622	1	10.40	10.4	Half core
								638	639	1	0.58	0.6	Half core
				includi	ng			671	676	5	0.91	4.6	Half core
				includi	ng			673.2	676	2.8	1.26	3.5	Half core
				includi	ng			673.2	673.85	0.65	2.46	1.6	Half core
								690.43	698.8	8.37	3.23	27.1	Half core
				includi	ng			692.95	698.8	5.85	4.46	26.1	Half core
				includi	ng			692.95	696.71 695.8	3.76	6.48 7.55	24.4	Half core
	<u> </u>			includi	ng			694	694.9	0.9	10.61	9.5	Half core
								715.2	716.2	1	3.91	3.9	Half core
				includi	ng			792	805	13	1.97	25.7	Half core
				includi	ing			794	798.9	4.9	4.90	24.0	Half core
				includi	ng			795	798.9	3.9	5.90	23.0	Half core
				includi	ng			795	796.2	1.2	4.73	5.7	Half core
								820	824	4	0.58	2.3	Half core
				includi	ng			821	824	3	0.71	2.1	Half core
				includi	ng na			822	824 823	2	0.96	1.9	Half core
								857	858	1	0.78	0.8	Half core
BBDD0124	Bombora	6600903	458695	312	606.6	-58	89	42	42.7	0.7	0.71	0.5	Half core
				includi	na			65.55	69.5	4.45 3.95	1.43	6.3	Half core
				includi	ng			68.1	69.5	1.4	4.10	5.7	Half core
				includi	ng			69 86	69.5 86.9	0.5	6.81	3.4	Half core
				includi	ng			86.3	86.9	0.6	2.40	1.3	Half core
								91.87	96.13	4.26	1.02	4.4	Half core
				includi	ng			91.87	92.3 108.5	0.43	7.29	3.1	Half core
			1	includi	ng			103.55	104.2	0.65	1.46	0.9	Half core
								107.7	108.5	0.8	1.99	1.6	Half core
				includi	na			122	123.39	1.39	1.4/	2.0	Half core
				includi	ng			122.4	123.09	0.69	2.44	1.7	Half core
								144	144.6	0.6	3.45	2.1	Half core
								149	160.5	0.9	0.50	0.5	Half core
								249.8	250.1	0.3	1.49	0.4	Half core
				includi				260	263	3	3.77	11.3	Half core
				includi	ng			260.56	262.06	1.46	9.95	10.6	Half core
					Ľ			310	318.25	8.25	16.28	134.3	Half core
				includi	ng			316	318.25	2.25	59.34	133.5	Half core
		1		includi	ng			316.5	317.8	1.3	102.30	133.0	Half core
								547.5	555	7.5	2.10	15.7	Half core
				includi	ng			547.5	553	5.5	2.79	15.3	Half core
				includi	ng			547.5	550	2.5	5.83	14.6	Half core
				includi	ng			549	550	1	11.03	11.0	Half core
BBDD0125	Bombora	6603197	458501	includi	879.6	-55	88	229.8	232	2.2	0.75	1.7	Half core
				includi	ng			229.8	230.5	0.7	1.50	1.0	Half core
								250.56	254	3.44	1.63	5.6	Half core
	1	1		includi	ng			251	253	2	2.72	5.4	Halt core

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
								514.3	515.4	1.1	0.63	0.7	Half core
				includi	ing		1	514.3	515	0.7	0.78	0.5	Half core
								519	520.7	1.7	0.53	0.9	Half core
								525.1	527	1.9	0.75	1.4	Half core
				includi	ing	1	1	525.1	526	0.9	1.34	1.2	Half core
	-			1 I I				575	581	6	1.35	8.1	Half core
				includi	ing I	1		5/5	580	5	1.5/	7.9	Half core
								590.25	- 379 - 600	9.75	0.51	0.0	Half core
				includi	ina		1	591	600	9	0.53	4.8	Half core
				includi	ing			591	593	2	1.22	2.4	Half core
				includi	ing			592	593	1	1.87	1.9	Half core
				and	1	1	1	598	599	1	1.00	1.0	Half core
								643	650	7	0.34	2.4	Half core
				includi	ing			643	644	1	1.02	1.0	Half core
				and	1			661	650	17	0.50	0.9	Half core
				includi	ina	I	I	662.2	662.7	0.5	1.04	0.5	Half core
					Ĭ			682	687	5	0.50	2.5	Half core
				includi	ing		•	682	683	1	2.05	2.0	Half core
								754	755	1	0.91	0.9	Half core
								760.1	766.55	6.45	8.80	56.8	Half core
				includi	ing			763	/66.55	3.55	14.58	51.8	Half core
				inciual	ing				/ 66.33	1.55 8m to 879	28.31	43.9	Hair core
BBDD0129	Bombora	6600825	458720	312	561.7	-60	90	Assays P	ending 70		.0111		
BBRC1868	Bombora South	6599759	458730	317	216.0	-60	91	96	100	4	0.17	0.7	Composite
BBRC1869	Bombora South	6599758	458693	317	204.0	-61	93	68	76	8	0.56	4.5	Composite
				includi	ing			72	76	4	0.82	3.3	Composite
								126	132	6	1.98	11.9	Riffle Split
				includi	ing			127	128	1	6.75	6.7	Riffle Split
	-			includi	ing			12/	132	5	2.30	2.0	Riffle Split
BBRC1870	Bombora South	6599759	458652	317	222.0	-60	88	12	16	4	0.31	1.2	Composite
DDRCTO	Bornibord Coorn		100002	017	222.0			95	96	1	0.15	0.2	Riffle Split
								100	104	4	0.21	0.8	Composite
								109	110	1	0.35	0.4	Riffle Split
				includi	ing	1	1	109	111	2	0.31	0.6	Riffle Split
				in a buali				153	156	3	6.82	20.5	Riffle Split
				includi	ing			154	155	2	9.80	14.5	Riffle Split
BBRC1871	Bombora South	6599659	458689	317	216.0	-61	94	115	116	1	0.38	0.4	Riffle Split
				includi	ing	•.	1	115	120	5	0.26	1.3	Riffle Split
BBRC1872	Bombora South	6599658	458650	316	204.0	-60	89	20	28	8	0.28	2.2	Composite
								108	112	4	0.12	0.5	Composite
	-				ļ			144	160	16	0.44	7.1	Composite
				Includi	ing			144	145	1	3./3	3./	Riffle Split
				unc	Í		1	192	200	8	0.72	1.4	Composite
BBRC1873	Bombora South	6599659	458609	316	204.0	-61	91	12	44	32	0.20	6.4	Composite
				in <u>clu</u> di	ing	•	•	16	20	4	0.29	1.2	Composite
								24	28	4	0.27	1.1	Composite
L					<u> </u>			36	44	8	0.26	2.1	Composite
				includi	irig I		1	40	44	4	0.31	1.2	Composite
								148	04 172	4 4	1.32	57	Composite
BBRC1874	Bombora South	6599559	458650	316	204.0	-60	88	100	104	4	0.44	1.8	Composite
								144	147	3	4.28	12.9	Riffle Split
				includi	ing		•	144	148	4	3.27	13.1	Riffle Split
				includi	ing			145	147	2	6.13	12.3	Riffle Split
	Developed Contra	1500515	450 (10	includi	ing			145	146	1	10.94	10.9	Riffle Split
BBRC1875	Bombora South	6599560	458610	315	250.0	-59	90	20	28	8	0.14	1.1	Composite
					<u> </u>			124	76 1/0	4	0.21	0.7	
			1	includi	ina	1	I	124	132	8	0.98	7.8	Composite
				includi	ing			124	128	4	1.45	5.8	Composite
				and				136	140	4	0.35	1.4	Composite
								144	148	4	0.16	0.6	Composite
		<u> </u>						168	172	4	1.07	4.3	Composite
BBRC1855	Syenite	6600199	459668	315	132.0	-59	273						Composite
BBRC1856	syenite	6600196	459726	315	132.0	-59	270	72	76	4	0.48	1.9	Composite
BBBC1957	Svenite	6599802	<u>459740</u>	314	102.0	-40	27∩	104	108 20	4	0.22	0.9	Composite
BBRC1858	Svenite	6599798	459816	314	120.0	-60	270	76	80	4	0.31	1.2	Composite
- 28.01000	0,01110	00,7770		717	120.0	50	2/0	, ,,	50	- T	0.77	1.0	Composito

Hole No.	Prospect	North	East	RL	Depth	Dip	Azim	From	То	Length	Gold g/t	gm	Sample
BBRC1862	Syenite	6598599	460198	317	14.0	-60	270						
	Abandoned												
BBRC1879	Syenite	6598398	460219	318	180.0	-59	274						
BBRC1880	Syenite	6598399	460297	318	180.0	-59	270						
BBRC1881	Syenite	6598196	460916	316	162.0	-60	275						
BBRC1882	Syenite	6597800	460493	320	132.0	-59	277	56	64	8	0.19	1.5	Composite
				includ	ing			60	64	4	0.25	1.0	Composite
								72	73	1	0.15	0.2	Riffle Split
BBRC1859	Syenite/Claypan	6599198	460050	315	126.0	-60	270	36	40	4	0.20	0.8	Composite
								76	80	4	0.87	3.5	Composite
BBRC1860	Syenite/Claypan	6598900	460056	316	126.0	-60	269	56	60	4	0.11	0.4	Composite
								64	68	4	0.12	0.5	Composite
								80	84	4	0.27	1.1	Composite
								96	100	4	0.33	1.3	Composite
				includ	ing			96	104	8	0.29	2.3	Composite
BBRC1861	Syenite/Claypan	6598700	460178	317	120.0	-60	274	28	36	8	0.15	1.2	Composite
								52	68	16	0.23	3.7	Composite
				includ	ing			60	64	4	0.45	1.8	Composite
				includ	ing			60	68	8	0.34	2.7	Composite
								92	100	8	0.87	7.0	Composite
				includ	ing			96	100	4	1.56	6.2	Composite
BBRC1863	Claypan	6598601	459943	318	156.0	-60	274						
BBRC1876	Claypan South	6597997	459920	321	220.0	-60	272						
BBRC1877	Claypan South	6598394	459942	319	210.0	-59	272	120	124	4	0.18	0.7	Composite
BBRC1878	Claypan South	6598200	459978	324	150.0	-59	273	92	96	4	0.14	0.5	Composite
BBRC1851	Carbineer	6602997	459120	315	198.0	-60	272						
BBRC1852	Carbineer	6602798	459035	314	198.0	-61	282						
BBRC1853	Carbineer	6602795	459115	314	210.0	-60	273	52	56	4	0.13	0.5	Composite
								128	132	4	0.16	0.6	Composite
BBRC1854	Carbineer	6602799	459218	314	120.0	-60	267						

Note:

The RC assay results are preliminary with many results based on 4m composite samples. One metre riffle-split results are pending for any composite results above a nominal 0.1g/t Au.

Assay results for BBDD0123 were partially reported in ASX Release of 30 July 2021. Results for the entire hole are tabled with previously reported results highlighted in italics.

Assay results for BBDD0125 are incomplete with results pending for 768m to 879.6m.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary					
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core. 					
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.					
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m). The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.					
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.					
Drill sample	Method of recording and assessing core and chip sample recoveries and results	RC drilling recoveries were visually estimated as a semi-qualitative range					

Criteria	JORC Code explanation	Commentary
recovery	assessed.	and recorded on the drill log along with moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken

Criteria	JORC Code explanation	Commentary				
		of each tray both dry and wet.				
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.				
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.				
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.				
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.				
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.				
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.				
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.				
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.				
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.				
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.				
	results tor tield duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.				
		Duplicate sample results are reviewed regularly for both internal and external				

Criteria	JORC Code explanation	Commentary				
		reporting purposes.				
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.				
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.				
lesis	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.				
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples.				
	have been established.	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.				
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.				
	The use of twinned holes.	n/a				
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.				
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.				
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary				

Criferia	JORC Code explanation	Commentary
	estimation.	using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data	Data spacing for reporting of Exploration	Drill holes are variable spacings.
spacing and distribution	Results.	Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The reported drilling is reconnaissance in nature at this stage.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival. All assay pulps are retained and stored in a Company facility for future reference if

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement M28/388, which is held 100% by BRB.
		There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and

Criteria	JORC Code explanation	Commentary
		quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the	Grades are reported above a nominal lower cut-off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied. All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Grades are reported above a lower cut- off grade of 0.2g/t Au in areas of reconnaissance drilling. In known mineralisaed areas grades are reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.